* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture 05
Survey
Document related concepts
Transcript
EE466: VLSI Design Lecture 05: DC and transient response – CMOS Inverters 4: DC and Transient Response CMOS VLSI Design Slide 1 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation 4: DC and Transient Response CMOS VLSI Design Slide 2 Activity 1) If the width of a transistor increases, the current will increase decrease not change 2) If the length of a transistor increases, the current will increase decrease not change 3) If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change 4) If the width of a transistor increases, its gate capacitance will increase decrease not change 5) If the length of a transistor increases, its gate capacitance will increase decrease not change 6) If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change 4: DC and Transient Response CMOS VLSI Design Slide 3 Activity 1) If the width of a transistor increases, the current will increase decrease not change 2) If the length of a transistor increases, the current will increase decrease not change 3) If the supply voltage of a chip increases, the maximum transistor current will increase decrease not change 4) If the width of a transistor increases, its gate capacitance will increase decrease not change 5) If the length of a transistor increases, its gate capacitance will increase decrease not change 6) If the supply voltage of a chip increases, the gate capacitance of each transistor will increase decrease not change 4: DC and Transient Response CMOS VLSI Design Slide 4 DC Response DC Response: Vout vs. Vin for a gate Ex: Inverter – When Vin = 0 -> Vout = VDD – When Vin = VDD -> Vout = 0 VDD – In between, Vout depends on Idsp transistor size and current Vin Vout – By KCL, must settle such that Idsn Idsn = |Idsp| – We could solve equations – But graphical solution gives more insight 4: DC and Transient Response CMOS VLSI Design Slide 5 Transistor Operation Current depends on region of transistor behavior For what Vin and Vout are nMOS and pMOS in – Cutoff? – Linear? – Saturation? 4: DC and Transient Response CMOS VLSI Design Slide 6 nMOS Operation Cutoff Linear Saturated Vgsn < Vgsn > Vgsn > Vdsn < Vdsn > VDD Vin Idsp Vout Idsn 4: DC and Transient Response CMOS VLSI Design Slide 7 nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vgsn > Vtn Vgsn > Vtn Vdsn < Vgsn – Vtn Vdsn > Vgsn – Vtn VDD Vin Idsp Vout Idsn 4: DC and Transient Response CMOS VLSI Design Slide 8 nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vgsn > Vtn Vgsn > Vtn Vdsn < Vgsn – Vtn Vdsn > Vgsn – Vtn VDD Vgsn = Vin Vin Vdsn = Vout 4: DC and Transient Response Idsp Vout Idsn CMOS VLSI Design Slide 9 nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vin < Vtn Vgsn > Vtn Vin > Vtn Vdsn < Vgsn – Vtn Vout < Vin - Vtn Vgsn > Vtn Vin > Vtn Vdsn > Vgsn – Vtn Vout > Vin - Vtn VDD Vgsn = Vin Vin Vdsn = Vout 4: DC and Transient Response Idsp Vout Idsn CMOS VLSI Design Slide 10 pMOS Operation Cutoff Linear Saturated Vgsp > Vgsp < Vgsp < Vdsp > Vdsp < VDD Vin Idsp Vout Idsn 4: DC and Transient Response CMOS VLSI Design Slide 11 pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vgsp < Vtp Vgsp < Vtp Vdsp > Vgsp – Vtp Vdsp < Vgsp – Vtp VDD Vin Idsp Vout Idsn 4: DC and Transient Response CMOS VLSI Design Slide 12 pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vgsp < Vtp Vgsp < Vtp Vdsp > Vgsp – Vtp Vdsp < Vgsp – Vtp VDD Vgsp = Vin - VDD Vtp < 0 Vin Vdsp = Vout - VDD 4: DC and Transient Response Idsp Vout Idsn CMOS VLSI Design Slide 13 pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vin > VDD + Vtp Vgsp < Vtp Vin < VDD + Vtp Vdsp > Vgsp – Vtp Vout > Vin - Vtp Vgsp < Vtp Vin < VDD + Vtp Vdsp < Vgsp – Vtp Vout < Vin - Vtp VDD Vgsp = Vin - VDD Vtp < 0 Vin Vdsp = Vout - VDD 4: DC and Transient Response Idsp Vout Idsn CMOS VLSI Design Slide 14 I-V Characteristics Make pMOS is wider than nMOS such that bn = bp Vgsn5 Vgsn4 Idsn Vgsn3 -Vdsp Vgsp1 Vgsp2 -VDD 0 VDD Vdsn Vgsp3 Vgsp4 Vgsn2 Vgsn1 -Idsp Vgsp5 4: DC and Transient Response CMOS VLSI Design Slide 15 Current vs. Vout, Vin Idsn, |Idsp| Vin0 Vin5 Vin1 Vin4 Vin2 Vin3 Vin3 Vin4 Vin2 Vin1 Vout 4: DC and Transient Response CMOS VLSI Design VDD Slide 16 Load Line Analysis For a given Vin: – Plot Idsn, Idsp vs. Vout – Vout must be where |currents| are equal in Idsn, |Idsp| Vin0 Vin5 Vin1 Vin4 Vin2 Vin3 Vin3 Vin4 Vin2 Vin1 Vout 4: DC and Transient Response CMOS VLSI Design VDD Vin Idsp Vout Idsn VDD Slide 17 Load Line Analysis Vin = 0 Vin0 Idsn, |Idsp| Vin0 Vout 4: DC and Transient Response CMOS VLSI Design VDD Slide 18 Load Line Analysis Vin = 0.2VDD Idsn, |Idsp| Vin1 Vin1 Vout 4: DC and Transient Response CMOS VLSI Design VDD Slide 19 Load Line Analysis Vin = 0.4VDD Idsn, |Idsp| Vin2 Vin2 Vout 4: DC and Transient Response CMOS VLSI Design VDD Slide 20 Load Line Analysis Vin = 0.6VDD Idsn, |Idsp| Vin3 Vin3 Vout 4: DC and Transient Response CMOS VLSI Design VDD Slide 21 Load Line Analysis Vin = 0.8VDD Vin4 Idsn, |Idsp| Vin4 Vout 4: DC and Transient Response CMOS VLSI Design VDD Slide 22 Load Line Analysis Vin = VDD Vin0 Idsn, |Idsp| Vin5 Vin1 Vin2 Vin3 Vin4 Vout 4: DC and Transient Response CMOS VLSI Design VDD Slide 23 Load Line Summary Idsn, |Idsp| Vin0 Vin5 Vin1 Vin4 Vin2 Vin3 Vin3 Vin4 Vin2 Vin1 Vout 4: DC and Transient Response CMOS VLSI Design VDD Slide 24 DC Transfer Curve Transcribe points onto Vin vs. Vout plot Vin0 Vin5 Vin1 Vin4 Vin2 Vin3 Vin3 Vin4 Vin2 Vin1 Vout 4: DC and Transient Response VDD A B Vout VDD C D 0 Vtn VDD/2 E VDD+Vtp VDD Vin CMOS VLSI Design Slide 25 Operating Regions Revisit transistor operating regions Region nMOS VDD pMOS A A B B Vout C C D D 0 E Vtn VDD/2 E VDD+Vtp VDD Vin 4: DC and Transient Response CMOS VLSI Design Slide 26 Operating Regions Revisit transistor operating regions Region nMOS A Cutoff Linear B Saturation Linear C Saturation Saturation D Linear Saturation E Linear VDD pMOS A B Vout Cutoff C D 0 Vtn VDD/2 E VDD+Vtp VDD Vin 4: DC and Transient Response CMOS VLSI Design Slide 27 Beta Ratio If bp / bn 1, switching point will move from VDD/2 Called skewed gate Other gates: collapse into equivalent inverter VDD bp 10 bn Vout 2 1 0.5 bp 0.1 bn 0 Vin 4: DC and Transient Response CMOS VLSI Design VDD Slide 28 Noise Margins How much noise can a gate input see before it does not recognize the input? Output Characteristics Logical High Output Range VDD Input Characteristics Logical High Input Range VOH NMH VIH VIL Indeterminate Region NML Logical Low Output Range VOL Logical Low Input Range GND 4: DC and Transient Response CMOS VLSI Design Slide 29 Logic Levels To maximize noise margins, select logic levels at Vout VDD b p/b n > 1 Vin Vout Vin 0 VDD 4: DC and Transient Response CMOS VLSI Design Slide 30 Logic Levels To maximize noise margins, select logic levels at – unity gain point of DC transfer characteristic Vout Unity Gain Points Slope = -1 VDD VOH b p/b n > 1 Vin VOL Vout Vin 0 Vtn 4: DC and Transient Response VIL VIH VDD- VDD |Vtp| CMOS VLSI Design Slide 31 Transient Response DC analysis tells us Vout if Vin is constant Transient analysis tells us Vout(t) if Vin(t) changes – Requires solving differential equations Input is usually considered to be a step or ramp – From 0 to VDD or vice versa 4: DC and Transient Response CMOS VLSI Design Slide 32 Inverter Step Response Ex: find step response of inverter driving load cap Vin (t ) Vin(t) Vout (t t0 ) dVout (t ) dt 4: DC and Transient Response Vout(t) Cload Idsn(t) CMOS VLSI Design Slide 33 Inverter Step Response Ex: find step response of inverter driving load cap Vin (t ) u(t t0 )VDD Vin(t) Vout (t t0 ) dVout (t ) dt 4: DC and Transient Response Vout(t) Cload Idsn(t) CMOS VLSI Design Slide 34 Inverter Step Response Ex: find step response of inverter driving load cap Vin (t ) u(t t0 )VDD Vin(t) Vout (t t0 ) VDD dVout (t ) dt 4: DC and Transient Response Vout(t) Cload Idsn(t) CMOS VLSI Design Slide 35 Inverter Step Response Ex: find step response of inverter driving load cap Vin (t ) u(t t0 )VDD Vin(t) Vout (t t0 ) VDD dVout (t ) I dsn (t ) dt Cload I dsn (t ) Vout Vout Vout(t) Cload Idsn(t) t t0 VDD Vt VDD Vt 4: DC and Transient Response CMOS VLSI Design Slide 36 Inverter Step Response Ex: find step response of inverter driving load cap Vin (t ) u(t t0 )VDD Vin(t) Vout (t t0 ) VDD dVout (t ) I dsn (t ) dt Cload Vout(t) Cload Idsn(t) 0 2 b I dsn (t ) V V DD 2 V (t ) b VDD Vt out 2 V (t ) V V V out out DD t 4: DC and Transient Response CMOS VLSI Design t t0 Vout VDD Vt Slide 37 Inverter Step Response Ex: find step response of inverter driving load cap Vin (t ) u(t t0 )VDD Vin(t) Vout (t t0 ) VDD Vout(t) Cload dVout (t ) I dsn (t ) dt Cload Idsn(t) Vin(t) 0 2 b I dsn (t ) V V DD 2 V (t ) b VDD Vt out 2 V (t ) V V V out out DD t 4: DC and Transient Response CMOS VLSI Design t t0 Vout VDD Vt Vout(t) t0 t Slide 38 Delay Definitions tpdr: tpdf: tpd: t r: tf: fall time 4: DC and Transient Response CMOS VLSI Design Slide 39 Delay Definitions tpdr: rising propagation delay – From input to rising output crossing VDD/2 tpdf: falling propagation delay – From input to falling output crossing VDD/2 tpd: average propagation delay – tpd = (tpdr + tpdf)/2 tr: rise time – From output crossing 0.2 VDD to 0.8 VDD tf: fall time – From output crossing 0.8 VDD to 0.2 VDD 4: DC and Transient Response CMOS VLSI Design Slide 40 Delay Definitions tcdr: rising contamination delay – From input to rising output crossing VDD/2 tcdf: falling contamination delay – From input to falling output crossing VDD/2 tcd: average contamination delay – tpd = (tcdr + tcdf)/2 4: DC and Transient Response CMOS VLSI Design Slide 41 Simulated Inverter Delay Solving differential equations by hand is too hard SPICE simulator solves the equations numerically – Uses more accurate I-V models too! But simulations take time to write 2.0 1.5 1.0 (V) Vin tpdf = 66ps tpdr = 83ps Vout 0.5 0.0 0.0 200p 400p 600p 800p 1n t(s) 4: DC and Transient Response CMOS VLSI Design Slide 42 Delay Estimation We would like to be able to easily estimate delay – Not as accurate as simulation – But easier to ask “What if?” The step response usually looks like a 1st order RC response with a decaying exponential. Use RC delay models to estimate delay – C = total capacitance on output node – Use effective resistance R – So that tpd = RC Characterize transistors by finding their effective R – Depends on average current as gate switches 4: DC and Transient Response CMOS VLSI Design Slide 43 Effective Resistance Shockley models have limited value – Not accurate enough for modern transistors – Too complicated for much hand analysis Simplification: treat transistor as resistor – Replace Ids(Vds, Vgs) with effective resistance R • Ids = Vds/R – R averaged across switching of digital gate Too inaccurate to predict current at any given time – But good enough to predict RC delay 4: DC and Transient Response CMOS VLSI Design Slide 44 RC Delay Model Use equivalent circuits for MOS transistors – Ideal switch + capacitance and ON resistance – Unit nMOS has resistance R, capacitance C – Unit pMOS has resistance 2R, capacitance C Capacitance proportional to width Resistance inversely proportional to width d g d k s s kC R/k kC 2R/k g g kC kC s 4: DC and Transient Response d k s kC g kC d CMOS VLSI Design Slide 45 RC Values Capacitance – C = Cg = Cs = Cd = 2 fF/mm of gate width – Values similar across many processes Resistance – R 6 KW*mm in 0.6um process – Improves with shorter channel lengths Unit transistors – May refer to minimum contacted device (4/2 l) – Or maybe 1 mm wide device – Doesn’t matter as long as you are consistent 4: DC and Transient Response CMOS VLSI Design Slide 46 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter A 2 Y 2 1 1 4: DC and Transient Response CMOS VLSI Design Slide 47 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 2C R A 2 Y 2 1 1 2C 2C Y R C C C 4: DC and Transient Response CMOS VLSI Design Slide 48 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 2C R A 2 Y 2 1 1 2C 2C 2C 2C Y R C R C C C C 4: DC and Transient Response CMOS VLSI Design Slide 49 Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 2C R A 2 Y 2 1 1 2C 2C 2C 2C Y R C R C C C C d = 6RC 4: DC and Transient Response CMOS VLSI Design Slide 50 Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). 4: DC and Transient Response CMOS VLSI Design Slide 51 Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). 4: DC and Transient Response CMOS VLSI Design Slide 52 Example: 3-input NAND Sketch a 3-input NAND with transistor widths chosen to achieve effective rise and fall resistances equal to a unit inverter (R). 2 2 2 3 3 3 4: DC and Transient Response CMOS VLSI Design Slide 53 3-input NAND Caps Annotate the 3-input NAND gate with gate and diffusion capacitance. 2 2 2 3 3 3 4: DC and Transient Response CMOS VLSI Design Slide 54 3-input NAND Caps Annotate the 3-input NAND gate with gate and diffusion capacitance. 2C 2 2C 2C 2C 2 2C 2C 2C 3C 3C 3C 4: DC and Transient Response 2 CMOS VLSI Design 2C 2C 3 3 3 3C 3C 3C 3C Slide 55 3-input NAND Caps Annotate the 3-input NAND gate with gate and diffusion capacitance. 2 2 2 3 5C 3 5C 3 5C 4: DC and Transient Response CMOS VLSI Design 9C 3C 3C Slide 56 Elmore Delay ON transistors look like resistors Pullup or pulldown network modeled as RC ladder Elmore delay of RC ladder t pd Ri to sourceCi nodes i R1C1 R1 R2 C2 ... R1 R2 ... RN CN R1 R2 R3 C1 C2 4: DC and Transient Response RN C3 CMOS VLSI Design CN Slide 57 Example: 2-input NAND Estimate worst-case rising and falling delay of 2input NAND driving h identical gates. 2 2 A 2 B 2x 4: DC and Transient Response Y h copies CMOS VLSI Design Slide 58 Example: 2-input NAND Estimate rising and falling propagation delays of a 2input NAND driving h identical gates. 2 2 A 2 B 2x Y 4hC 6C 4: DC and Transient Response h copies 2C CMOS VLSI Design Slide 59 Example: 2-input NAND Estimate rising and falling propagation delays of a 2input NAND driving h identical gates. 2 2 A 2 B 2x R Y (6+4h)C Y 4hC 6C h copies 2C t pdr 4: DC and Transient Response CMOS VLSI Design Slide 60 Example: 2-input NAND Estimate rising and falling propagation delays of a 2input NAND driving h identical gates. 2 2 A 2 B 2x R Y (6+4h)C Y 4hC 6C h copies 2C t pdr 6 4h RC 4: DC and Transient Response CMOS VLSI Design Slide 61 Example: 2-input NAND Estimate rising and falling propagation delays of a 2input NAND driving h identical gates. 2 2 A 2 B 2x Y 4hC 6C 4: DC and Transient Response h copies 2C CMOS VLSI Design Slide 62 Example: 2-input NAND Estimate rising and falling propagation delays of a 2input NAND driving h identical gates. 2 2 A 2 B 2x x R/2 R/2 2C Y 4hC 6C Y (6+4h)C 4: DC and Transient Response h copies 2C t pdf CMOS VLSI Design Slide 63 Example: 2-input NAND Estimate rising and falling propagation delays of a 2input NAND driving h identical gates. 2 2 A 2 B 2x x R/2 R/2 2C Y (6+4h)C Y 4hC 6C h copies 2C t pdf 2C R2 6 4h C R2 R2 4: DC and Transient Response 7 4h RC CMOS VLSI Design Slide 64 Delay Components Delay has two parts – Parasitic delay • 6 or 7 RC • Independent of load – Effort delay • 4h RC • Proportional to load capacitance 4: DC and Transient Response CMOS VLSI Design Slide 65 Contamination Delay Best-case (contamination) delay can be substantially less than propagation delay. Ex: If both inputs fall simultaneously 2 2 A 2 B 2x R R Y (6+4h)C Y 4hC 6C 2C tcdr 3 2h RC 4: DC and Transient Response CMOS VLSI Design Slide 66 Diffusion Capacitance we assumed contacted diffusion on every s / d. Good layout minimizes diffusion area Ex: NAND3 layout shares one diffusion contact – Reduces output capacitance by 2C – Merged uncontacted diffusion might help too 2C 2C Shared Contacted Diffusion Isolated Contacted Diffusion Merged Uncontacted Diffusion 2 2 2 3 3 3C 3C 3C 4: DC and Transient Response CMOS VLSI Design 3 7C 3C 3C Slide 67 Layout Comparison Which layout is better? VDD A VDD B Y GND 4: DC and Transient Response A B Y GND CMOS VLSI Design Slide 68