* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture notes lecture 12 (relativity)
Criticism of the theory of relativity wikipedia , lookup
Photoelectric effect wikipedia , lookup
Fictitious force wikipedia , lookup
Relational approach to quantum physics wikipedia , lookup
Four-vector wikipedia , lookup
Kinetic energy wikipedia , lookup
History of special relativity wikipedia , lookup
Speed of light wikipedia , lookup
Sagnac effect wikipedia , lookup
Classical mechanics wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Matter wave wikipedia , lookup
Hunting oscillation wikipedia , lookup
Inertial frame of reference wikipedia , lookup
Relativistic Doppler effect wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Special relativity (alternative formulations) wikipedia , lookup
Frame of reference wikipedia , lookup
One-way speed of light wikipedia , lookup
Minkowski diagram wikipedia , lookup
Variable speed of light wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Length contraction wikipedia , lookup
Velocity-addition formula wikipedia , lookup
Derivations of the Lorentz transformations wikipedia , lookup
Tests of special relativity wikipedia , lookup
Faster-than-light wikipedia , lookup
Relativity Classical” or “Newtonian” physics does a good job of describing the behavior of particles at low speeds. But as speeds approach light speed we must use The Special Theory of Relativity proposed by Einstein in 1905. Classical physics represents the “low speed limit” of relativistic physics. What do we have to know about relativity to solve problems in a correct way? => Just change Newton’s laws by introducing a correction factor for the mass F = d ( mv ) / dt m0 m= 2 2 1− v / c The principle of relativity was first stated by Newton “The motions of bodies included in a given space are the same among themselves, whether that space is at rest or moves uniformly forward in a straight line” Reference Frames The frame of reference for a person or object is the coordinate system which moves with the person or with the object. Think of the frame of reference as a set of xyz axes which are attached to the object. An inertial reference frame is one in which Newton’s Laws are valid. All inertial reference frames move with constant velocity relative to one another. (= Special Theory of Relativity) *If frames are accelerated (translational or rotational) then General Relativity applies (A little bit more complex) The Postulates of Relativity The Special Theory of Relativity is based on two postulates: • The laws of physics are the same in all inertial reference frames. • The speed of light in vacuum is ALWAYS measured to be 3 × 108 m/s, independent of the motion of the observer or the motion of the source of light. Both postulates tested exhaustively, no exceptions found! The Speed of Light If we apply Newtonian Mechanics to describe the propagation of light, then two observers who are in two different reference frames will measure a different value for the speed of light if there is relative motion between the reference frames. (Recall v13 = v12 + v23) However, that does not happen – all observers measure the same speed of light. We need Relativity Theory to explain this! The Ultimate Speed Experiment by Bertozzi in 1964 accelerated electrons and measured their speed and kinetic energy independently. Kinetic energy →∞ as speed → c Fig. 37-2 Ultimate Speed→Speed of Light: c = 299 792 458 m/s 37- Testing the Speed of Light Postulate If speed of light is same for all inertial reference frames, then speed of light emitted by a source (pion, π0) moving relative to a given frame (for example, a laboratory) should be the same as the speed light that is emitted by a source that is at rest in the laboratory). 1964 experiment at CERN (European particle physics lab): Pions moving at 0.9975c with respect to the laboratory decay, emitting two photons (γ). π0 →γ +γ The speed of the light waves (γ-rays) emitted by the pions was measured always to be c in the lab frame (not up to 2c!)→same as if pions were at rest in the lab frame! 37- The problems of “Classical Physics” • • • • Transformation of coordinates Maxwell equations wrong? Lorentz transformation Michelson-Morley experiment The Lorentz Transformation How are coordinates x, y, z, and t reporting an event in frame S related to the coordinates x', y', z', and t' reporting the same event in moving frame S'? Gallilean Transformation Equations x ' = x − vt (approximately valid t'=t at low speeds) (37-20) Origins coincide at t = t' =0 Fig. 37-9 Lorentz Transformation Equations x ' = γ ( x − vt ) y'= y (valid at all z'= z physically possible speeds) t ' = γ ( t − vx c 2 ) (37-21) 37- Fig. 37-9 x ' = x − vt (approximately valid t'=t at low speeds) (37-20) dx' dx = −v dt dt Assume that you travel in your car with a speed of 1 108 m/s and light travels past your car (S, 3 108 m/s) travels past your car. The relative speed should be 2 108 m/s !!!!!!! The Michelson Morley Experiment "But it can't be so." "It just doesn't make sense." horizontal path cthor ,1 = L + Δx = L + vthor ,1 cthor , 2 = L − Δx = L − vthor , 2 L thor ,1 = (c − u ) L 2L / c → thor ,1 + thor , 2 = thor , 2 = (c + u ) 1 − v2 / c2 vertical (ctvertical ) = L + (utvertical ) → tvertical 2 2tvertical = 2 2L 2L / c = c2 − u 2 1 − u 2 / c2 L = 2 c − u2 2tvertical 2L 2L / c = 2 = 2 c −u 1 − u 2 / c2 thor ,1 + thor , 2 2L / c = 2 2 1− v / c Lorentz: L|| = L0 1 − u / c 2 2 x ' = γ ( x − vt ) y'= y (valid at all z'= z physically possible speeds) t ' = γ ( t − vx c 2 ) (37-21) Time is Relative Time interval measurements depend on the frame in which they are measured. Events are any physical occurrence that happens at a specific location at a specific time. This a definition. Two events which appear to be simultaneous in one reference frame are in general not simultaneous in a second frame moving with respect to the first. Conclusions: In Relativity Theory, the distance between two points and the time interval between two events depend on the frame of reference in which they are measured! There is no absolute measure of time. There is no absolute measure of length. Time Dilation Two observers, each in their own reference frame moving with a relative velocity will not agree on how fast time passes. Each will think the other’s clock is wrong. Moving clocks run slow This effect is known as time dilation. 2d Δto = c Δt = 2d c2 − v2 = 2d v2 c 1− 2 c The proper time Δt0 is the time interval between two events as measured by an observer who sees the events occur at the same place (same location x,y,z). Let the “proper” frame move with velocity v with respect another frame. Time interval in moving frame: 2d Δt 0 / Δt = c Æ Δt = γ Δt0 where 2d / c 1 − v2 / c2 1 γ= 2 2 1− v / c Example: The decay of a muon. A muon is a naturally occurring subatomic particle of nature that is unstable and transforms itself to other parts with a mean time to decay of 2.20μs (created by cosmic radiation high in Earth’s atmosphere). The muon(-/+) mass is roughly 310 times that of an electron (positron). Assume that a muon is created at an altitude of 5.00 km above the surface of the earth and it travels toward the earth with a speed of 0.995c. The muon the gets a certain distance into the atmosphere and decays. So there is a time delay between the two events. (Without time delay a Muon cove 657m before decaying) Let that time delay be measured form the rest frame of the earth. 2.2 μ s 2.2 μ s Δt = = 2 1 − .990025 (.995c) 1− c2 2.20μ s Δt = = 22.02 μ s −2 9.987492 × 10 The average distance traveled is (0.995c)x(22.02μs)=6570 m So the muons make it to the ground. Speed Lorentz factor Reciprocal β=v/c γ 1/γ 0.010 1.000 1.000 0.100 1.005 0.995 0.200 1.021 0.980 0.300 1.048 0.954 0.400 1.091 0.917 0.500 1.155 0.866 0.600 1.250 0.800 0.700 1.400 0.714 0.800 1.667 0.600 0.866 2.000 0.500 0.900 2.294 0.436 0.990 7.089 0.141 0.999 22.366 0.045 Movie simlultaneity Example 1 An astronaut at rest on Earth has a heartbeat rate of 70 beats/min. When the astronaut is traveling in a spaceship at 0.90c, what will this rate be as measured by (a) an observer also in the ship and (b) an observer at rest on the Earth. a )70beats / min b)Δt = γΔt0 = 2.29 min ⇒ 31beats / min Example 2 An unstable particle called the pion has a mean lifetime of 25 ns in its own frame. A beam of pions travels through the laboratory at a speed of 0.60c. (a) What is the mean lifetime of the pion as measured in the laboratory? Given: Δt0 = 25 ns and v = 0.60c (β=0.60) γ= 1 1− β 2 = 1 1 − 0.60 2 = 1.250 Δt = γΔt0 = (1.250)(25 ns ) = 31 ns (b) How far does a pion travel (as measured by laboratory observers) during this time? d = vΔt = (0.6c )(31 ns ) = 5.6 m Length Contraction (Lorentz- or Fitzgerald Contraction) The distance between two points depends on the frame of reference in which it is measured. The proper length L0 is the length of the object measured in the frame of reference in which the object is at rest. If the object is moving in a reference frame, its length L will be measured to be less than its proper length: L = L0 / γ = L0 1 − v 2 /c 2 This is known as relativistic length contraction. Example 3 A friend in a spaceship travels past you at a high speed. He tells you that his ship is 20 m long and that the identical ship you are sitting in is 19 m long. According to your observations, (a) how long is your ship, (b) how long is his ship, and (c) what is the speed of your friend's ship? L= L0 γ L0 20m γ= = = 1.05 L 19m 1 γ= 1− β 2 1 1 β = 1− 2 = 1− 2 = 0.3 γ ⎛ 20 ⎞ ⎜ ⎟ ⎝ 19 ⎠ v β = ⇒ v = 0.3c c The proper length of one spaceship is three times that of another. The two spaceships are traveling in the same direction and, while both are passing overhead, an Earth observer measures the two spaceships to have the same length. If the slower spaceship is moving with a speed of 0.35c, determine the speed of the faster spaceship. L1 = L0 ,1 γ1 L2 = L1 = L2 γ 2 = 3γ 1 = 3.2 ⇒ β = 0.95 L0 , 2 γ2 = 3L0 ,1 γ2 A supertrain of proper length 100 m travels at a speed of 0.95c as it passes through a tunnel having proper length 50 m. As seen by a trackside observer, is the train ever completely within the tunnel? If so, by how much? L1 = L0 γ for β = 0.95 γ = 3 .2 ⇒ L = 100m / 3.2 = 31m YES! by 19m The Relativity of Velocities Δx = γ ( Δx '+ vΔt ') dx' dx = −v dt dt Δx u= Δt Δx ' and u ' = Δt ' u '+ v u= 1 + u ' v c2 u = u '+ v v Δx ' ⎞ ⎛ Δt = γ ⎜ Δt '+ 2 ⎟ c ⎠ ⎝ Δx Δx '+ vΔt ' = Δt Δt '+ Δx ' c 2 Δx Δx ' Δ t ' + v = Δt 1 + v ( Δ x ' Δ t ' ) c 2 (relativistic velocity transformation) (37-29) (classical velocity transformation) (37-30) 37- Relativistic Addition of Velocities In relativity theory we must modify the way we add velocities: The correct relativistic addition of velocities is: v1 + v 2 v = v 1v 2 1 + 2 c We are moving on a straight line relative to an object (for example an asteroid or earth) with a speed v1 of with respect to that object. We fire an object away from us at speed relative to us v2. If the two objects move on the same straight line then, the speed of object 2 as seen from the asteroid v is given by the equation above A spaceship, Enterprise, moving at 0.99c away from the earth launches a spaceship, Picard, back toward the earth with a speed relative to the Enterprise of 0.6c. What speed do we see the Picard moving on the earth? v= v1 + v2 0.99c − 0.6c .36c 0.36c = = = = 0.8866995c v1v2 .99c( −.6c ) 1 − .5940 .4060 1+ 2 1+ c c2 If instead, if the Picard was launched away from the Enterprise in the same direction as its motion, the answer would be v= v1 + v2 0.99c + 0.6c 1.59c 1.59c = = = = .99624c v1v2 .99c(.6c ) 1 + .5940 1.5960 1+ 2 1+ c c2 as seen from the earth (assumed to be at rest in these two examples). Spaceship R is moving to the right at a speed of 0.70c with respect to the Earth. A second spaceship, L, moves to the left at the same speed with respect to the Earth. What is the speed of L with respect to R? v1 + v 2 0 .7 c + 0 .7 c = = 0 . 94 c v= v1 v 2 0 .7 c 0 .7 c 1+ 2 1+ 2 c c A spaceship is traveling at 0.95c with respect to the Earth. Inside the spaceship, a man shines a flashlight in the direction the spaceship is moving. What is the velocity of the light from the flashlight with respect to Earth? v1 + v2 0.95c + c 0.95 + 1 v= = = c=c v1v2 0.95c c 1 + 0.95 1 + 2 1+ 2 c c Doppler Effect for Light Let f0 represent the proper frequency (frequency in the source's rest frame) f = f0 1-β 1+β (source and detector separating) (37-31) If source and detector moving towards one another β → - β Note: Unlike Doppler shift with sound, only relative motion matters since there is no ether/air to be moving with respect to. Low Speed Doppler Effect For β<<1 f = f 0 (1-β + 12 β 2 ) (source and detector separating, β 1) (37-32) 37- Doppler Effect for Light, cont'd Astronomical Doppler Effect f = f 0 (1-β ) (37-33) Proper wavelength λ0 associated with rest frame frequency f0. c λ = c λ0 λ0 = λ (1-β ) (1-β ) λ = λ0 (1-β ) -1 (37-34) λ − λ0 β= λ0 (37-35) Replacing β=v/c and using λ-λ0 = |Δλ| = Doppler shift v= Δλ λ0 c (radial speed of light source, v c) (37-36) 37- Doppler Effect for Light , cont'd Transverse Doppler Effect Classical theory predicts no Doppler shift observed at point D when source S is at point P. f = f 0 1-β 2 Fig. 37-12 (transverse Doppler Effect) (37-37) For low speeds (β<<1) f = f 0 (1- 12 β 2 ) (low speeds) (37-38) Transverse Doppler effect another test of time dilation (T=1/f) T= T0 1-β 2 =γ T0 (37-39) Proper period T0=1/f0) 37- Doppler Effect for Light , cont'd The NAVSTAR Navigation System v1 f03 f01 v2 vairplane v3 f02 Given v1, v2, v3, f01, f02, f03, and measured f1, f2, f3, can determine vairplane, 37- Relativistic Momentum In order for momentum to be conserved in relativistic interactions, we must modify our classical expression for momentum to read: p= m 0v 1 − v 2 /c 2 = γ m 0v m0 is called the rest mass of the object. Doing work increase mass and velocity!! http://www.aip.org/history/einstein/sound/voice1.wav Relativistic Energy The total energy E of an object moving with velocity v is: 2 m c 0 E = γm0 c 2 = = mc 2 2 2 1 − v /c Mass is another form of energy! The energy of an object at rest is E0 = m0c2, which is known as the rest energy. The total energy is comprised of the rest energy and the 2 kinetic energy: Relativistic kinetic energy m0 c 2 = m0 c + K E= 2 2 1 − v /c m0 c 2 2 − m c K= 0 2 2 1 − v /c Mass at rest m0 “rest mass” Mass at a certain velocity m= γ m0 Old answer: New answer: E= m0 c 2 1− β 2 1− β ≈ 1− 2 E= m0 c 2 1− β 2 2 E = ½ m v2 E=mc2= γ m0c2 small velocity β = very small β 2 2 ⎛ β since ⎜⎜1 − 2 ⎝ 2 1 now 1− β 2 2 2 ⎞ β2 β4 ⎟⎟ = 1 - 2 + 2 4 ⎠ ≈ 1+ β2 2 → 1 = 1+ β4 4 2 v 2 2 1 β2 2 2 2 β 2 2 c 2 E = m0 c (1 + ) = m0 c + m0 c = m0 c + m0 c = m0 c + m0 v 2 2 2 2 2 Energy of a photon? E=h f = mc2= γ m0c2 ∞ 0 In nuclear reactions like in the sun, we convert four hydrogen atoms into one helium atom. The mass before and after the reaction is different – the mass difference is released as the energy that drives the solar furnace. Nuclear Fusion The fusion of one pound of hydrogen into helium yields as much energy as the burning of 10,000 tons of coal. Example 7 Calculate the momentum of a proton moving with a speed of 0.5c. Proton rest mass mp: 1.6726231e-27 kg 1.67 ⋅ 10 kg ⋅ 0.5 c m0v p= = 2 2 2 1 − v /c 1 − 0.5 -27 p = 1⋅ 10 kg ⋅ 0.5 c -27 Example 8 An electron moves with a speed of 0.80c. Calculate its (a) rest energy, (b) total energy, and (c) kinetic energy. Rest mass[electron] = 9.10939*10-31 kg E rest = m 0 c = 9 . 1 ⋅ 10 2 − 31 kg c 2 Etotal = γ m0c = 1.67 ⋅ 9.1 ⋅10 kg c 2 −31 2 K = γ m0c 2 − m0c 2 = 0.67 ⋅ 9.1 ⋅ 10−31 kg c 2 A New Look at Energy, cont'd p 2 = 2 Km Momentum and kinetic energy ( pc ) 2 2 = K 2 + 2 Kmc 0 E = ( pc ) + ( mc 0 2 2 2 ) 2 (classical) (37-51) (37-54) (37-55) sin θ = β and cosθ = 1 γ (37-56) Fig. 37-15 37- A proton in a high-energy accelerator is given a kinetic energy of 50.0 GeV. Determine (a) the momentum and (b) the speed of the proton. 1 electron volt = 1.60217646 × 10-19 Joules Proton rest mass mp: 1.6726231e-27 kg ( pc ) 2 = K 2 + 2 0Kmc 2 K = γ m0c − m0c 2 K γ = +1 2 m0c (37-54) 2