Download Ch2Fall2012

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Routhian mechanics wikipedia , lookup

Kinematics wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Biofluid dynamics wikipedia , lookup

Centripetal force wikipedia , lookup

Rheology wikipedia , lookup

Equations of motion wikipedia , lookup

Classical central-force problem wikipedia , lookup

Reynolds number wikipedia , lookup

Rigid body dynamics wikipedia , lookup

Buoyancy wikipedia , lookup

Fluid dynamics wikipedia , lookup

Bernoulli's principle wikipedia , lookup

Transcript
058:0160
Jianming Yang
Fall 2012
Chapter 2
1
Chapter 2: Pressure Distribution in a Fluid
1 Pressure and pressure gradient
In fluid statics, as well as in fluid dynamics, the forces acting
on a portion of fluid, control volume (C.V.), bounded by a
control surface (C.S.) are of two kinds: body forces and
surface forces.
Body Forces: act on the entire body of the fluid (force per
unit volume).
Surface Forces: act at the C.S. and are due to the surrounding
medium (force per unit area: stress).
In general the surface forces can be resolved into
two components: one normal and one tangential to the surface.
http://www.biomedsearch.com/attachments/displa
y/00/19/77/26/19772652/1743-8454-6-12-1.jpg
058:0160
Jianming Yang
Fall 2012
Considering a cubical fluid element, we see that
the stress in a moving fluid comprises a 2nd order tensor.
Since, by definition, a fluid cannot withstand a shear stress without moving
(deformation), a stationary fluid must necessarily be completely free of shear stress
(ฯƒij=0, i โ‰  j).
The only non-zero stress is the normal stress, which is referred to as pressure:
๐‘ = โˆ’๐œŽ๐‘ฅ๐‘ฅ = โˆ’๐œŽ๐‘ฆ๐‘ฆ = โˆ’๐œŽ๐‘ง๐‘ง ,
taken positive for compression by common convention.
Chapter 2
2
058:0160
Jianming Yang
Chapter 2
3
Fall 2012
(one value at a point, independent
of direction, p is a scalar)
n
p x = p y = p z = pn = p
i.e. normal stress (pressure) is isotropic. This can be easily seen
by considering the equilibrium of a wedge shaped fluid element
Force balance:
๏ƒฅ Fx ๏€ฝ 0 ๏€ฝ pxb๏„z ๏€ญ pnb๏„s sin ๏ฑ
๏ƒฅ Fz ๏€ฝ 0 ๏€ฝ pz b๏„x ๏€ญ pnb๏„s cos๏ฑ ๏€ญ 12 ๏ฒgb๏„x๏„z
From geometry of the wedge
๏„s sin ๏ฑ ๏€ฝ ๏„z
๏„s cos๏ฑ ๏€ฝ ๏„x
therefore
p x ๏€ฝ pn
pz ๏€ฝ pn ๏€ซ 12 ๏ฒg๏„z
In the limit as the fluid wedge shrinks to a
point ๏„z ๏‚ฎ 0
px ๏€ฝ pz ๏€ฝ pn ๏€ฝ p
058:0160
Jianming Yang
Chapter 2
4
Fall 2012
Note: For a fluid in motion, the normal stress is different on each face and not equal to p.
ฯƒxx โ‰  ฯƒyy โ‰  ฯƒzz โ‰  -p
By convention p is defined as the average of the normal stresses
p๏€ฝ๏€ญ
1
1
๏ณ xx ๏€ซ ๏ณ yy ๏€ซ ๏ณ zz ๏€ฉ ๏€ฝ ๏€ญ ๏ณ ii
๏€จ
3
3
The fluid element experiences a force on it as a result of the fluid pressure distribution if
it varies spatially. Consider the net force in the x direction due to p(x,t).
๏‚ถp ๏ƒถ
๏‚ถp
๏ƒฆ
dFx ๏€ฝ p dy dz ๏€ญ ๏ƒง p ๏€ซ
dx ๏ƒทdy dz ๏€ฝ ๏€ญ dx dy dz
๏‚ถx ๏ƒธ
๏‚ถx
๏ƒจ
The result will be similar for dFy and dFz; consequently, we conclude:
๏ƒฆ ๏‚ถp
๏‚ถp
๏‚ถp ๏ƒถ
dFpress ๏€ฝ ๏ƒง๏ƒง ๏€ญ
i๏€ญ
j๏€ญ
k ๏ƒท๏ƒทdxdydz
๏‚ถ
x
๏‚ถ
y
๏‚ถ
z
๏ƒจ
๏ƒธ
Or: f press ๏€ฝ ๏€ญ๏ƒ‘p
is the force per unit volume due to p(x,t).
Note: if p=constant, f press ๏€ฝ 0 .
058:0160
Jianming Yang
Chapter 2
5
Fall 2012
2 Equilibrium of a fluid element
Consider now a fluid element which is acted upon by both surface forces and a body
force due to gravity
dFgrav ๏€ฝ ๏ฒgdxdydz or fgrav ๏€ฝ ๏ฒg (per unit volume)
Application of Newtonโ€™s law yields:
ma ๏€ฝ ๏ƒฅ F ๏ƒž ๏ฒdxdydza ๏€ฝ ๏ƒฅ f dxdydz
๏ฒ a ๏€ฝ ๏ƒฅ f ๏€ฝ fbody ๏€ซ fsurface (per unit volume)
f body ๏€ฝ ๏ฒg ๏€ฝ ๏€ญ ๏ฒgk ๏€จg ๏€ฝ ๏€ญ gk ๏€ฉ
fsurface ๏€ฝ f press ๏€ซ f visc ๏€ฝ ๏€ญ๏ƒ‘p ๏€ซ ๏ƒ‘ ๏ƒ— ๏€จ2๏ญS ๏€ฉ
for incompressible Newtonian fluid flow, S is the stain rate tensor
๏ฒa ๏€ฝ ๏ฒg ๏€ญ
inertial
gravity
๏ƒ‘p
pressure gradient
๏€ซ ๏ƒ‘ ๏ƒ— ๏€จ2๏ญS ๏€ฉ
viscous
and
๏‚ถV
a๏€ฝ
๏€ซ V ๏ƒ— ๏ƒ‘V
๏‚ถt
This is called the Navier-Stokes equation and will be discussed further in Chapter 4.
058:0160
Jianming Yang
Chapter 2
6
Fall 2012
Consider solving the N-S equation for p when ๐š and ๐• are known.
๏ƒ‘p ๏€ฝ ๏ฒ ๏€จg ๏€ญ a๏€ฉ ๏€ซ ๏ƒ‘ ๏ƒ— ๏€จ2๏ญS๏€ฉ ๏€ฝ B(x, t )
This is simply a first order p.d.e. for p and can be solved readily. For the general case (๐•
and p unknown), one must solve the N-S and continuity equations, which is a formidable
task since the N-S equations are a system of 2nd order nonlinear p.d.e.โ€™s.
We now consider the following special cases :
1) Hydrostatics (๐š = 0 and ๐• = 0 โ‡’ ๐’ = 0)
1
2) Rigid body translation or rotation (no relative motion: ๐’ = [โˆ‡๐• + (โˆ‡๐•)T ] = 0)
2
3) Irrotational motion ( ๏ƒ‘ ๏‚ด V ๏€ฝ 0 )
If viscous effects are neglected, the incompressible Navier-Stokes equation becomes
incompressible Euler equation:
๏ƒฆ ๏‚ถV
๏ƒถ
๏€ซ V ๏ƒ— ๏ƒ‘V ๏ƒท ๏€ฝ ๏ฒ g ๏€ญ ๏ƒ‘p
๏ƒจ ๏‚ถt
๏ƒธ
๏ฒ๏ƒง
also,
๏ƒ‘ ๏‚ด V ๏€ฝ 0 ๏ƒž V ๏€ฝ ๏ƒ‘๏ช
and if ๏ฒ = constant,
2
๏ƒ‘๏ƒ— V ๏€ฝ 0 ๏ƒž ๏ƒ‘ ๏ช ๏€ฝ 0
๏ƒฆ ๏‚ถ๏ช ๏ƒ‘ 2๏ช p
๏ƒถ
๏ƒฆ ๏‚ถV
๏ƒถ
๏ƒง
๏ฒ๏ƒง
๏€ซ V ๏ƒ— ๏ƒ‘V ๏ƒท ๏€ฝ ๏ฒ g ๏€ญ ๏ƒ‘ p ๏ƒž ๏ƒ‘
๏€ซ
๏€ซ ๏€ซ gz ๏ƒท ๏€ฝ 0
๏ƒง
๏ƒท
2
๏ฒ
๏ƒจ ๏‚ถt
๏ƒธ
๏ƒจ ๏‚ถt
๏ƒธ
๏‚ถ๏ช ๏ƒ‘ 2๏ช p
๏ƒž
๏€ซ
๏€ซ ๏€ซ gz ๏€ฝ const
๏‚ถt
2
๏ฒ
(Bernoulliโ€™s equation)
058:0160
Jianming Yang
Chapter 2
7
Fall 2012
3 Case (1): Hydrostatic Pressure Distribution
๏ƒ‘p ๏€ฝ ๏ฒg ๏€ฝ ๏€ญ ๏ฒgk
๏‚ถp ๏‚ถp
i.e. ๏‚ถx ๏€ฝ ๏‚ถy ๏€ฝ 0
and
๏‚ถp
๏€ฝ ๏€ญ๏ฒ g
๏‚ถz
or
2
2
1
1
dp ๏€ฝ ๏€ญ ๏ฒgdz
p ๏€ญ p ๏€ฝ ๏€ญ ๏ƒฒ ๏ฒgdz ๏€ฝ ๏€ญ g ๏ƒฒ ๏ฒ ( z )dz
2
1
๏ƒฆr ๏ƒถ
g ๏€ฝ g0 ๏ƒง 0 ๏ƒท
๏ƒจr๏ƒธ
2
r๏‚ญ
g ๏‚ฏ , constant near earthโ€™s surface ๐‘Ÿ
0
liquids ๏ƒ  ๐œŒ = const. (for one liquid)
๐‘ = โˆ’๐œŒ๐‘”๐‘ง + constant
gases
๏ƒ  ๐œŒ = ๐œŒ(๐‘, ๐‘ก) which is known from the equation of state:
๐‘ = ๐œŒ๐‘…๐‘‡ โ‡’ ๐œŒ = ๐‘/๐‘…๐‘‡
dp
p
๏€ฝ ๏€ญ ๏ฒg ๏€ฝ ๏€ญ
g
dz
RT
๏ƒž
dp
g dz
๏€ฝ๏€ญ
p
R T (z )
which can be integrated if ๐‘‡ = ๐‘‡(๐‘ง) is known as it is for the atmosphere.
058:0160
Jianming Yang
Fall 2012
Chapter 2
8
4 Manometry
Manometers are devices that use liquid columns for measuring differences in pressure. A
general procedure may be followed in working all manometer problems:
1.) Start at one end (or a meniscus if the circuit is continuous) and write the pressure
there in an appropriate unit or symbol if it is unknown.
2.) Add to this the change in pressure (in the same unit) from one meniscus to the next
(plus if the next meniscus is lower, minus if higher).
3.) Continue until the other end of the gage (or starting meniscus) is reached and equate
the expression to the pressure at that point, known or unknown.
๐‘๐ด โˆ’ ๐‘๐ต
= (๐‘๐ด โˆ’ ๐‘1 )
+(๐‘1 โˆ’ ๐‘2 )
+(๐‘2 โˆ’ ๐‘3 )
+(๐‘3 โˆ’ ๐‘๐ต )
= โˆ’๐›พ1 (๐‘ง๐ด โˆ’ ๐‘ง1 )
โˆ’๐›พ2 (๐‘ง1 โˆ’ ๐‘ง2 )
โˆ’๐›พ3 (๐‘ง2 โˆ’ ๐‘ง3 )
โˆ’๐›พ4 (๐‘ง3 โˆ’ ๐‘ง๐ต )
058:0160
Jianming Yang
Chapter 2
9
Fall 2012
5 Hydrostatic forces on plane surfaces
The force on a body due to a pressure distribution is: F ๏€ฝ ๏€ญ๏ƒฒA pn dA
where for a plane surface n = constant and we need only consider |F| noting that its
direction is always towards the surface: F ๏€ฝ ๏ƒฒA p dA .
Consider a plane surface entirely submerged in a liquid such that the plane of the surface
intersects the free-surface with an angle ฮฑ. The surface centroid is denoted ( x, y ).
dF ๏€ฝ p dA ๏€ฝ ๏ง hdA ๏€ฝ ๏ง y sin ๏ก dA
F ๏€ฝ ๏ƒฒ ๏ง y sin ๏ก dA
A
๏€ฝ ๏ง sin ๏ก ๏ƒฒ y dA
A
๏€ฝ ๏ง sin ๏ก y A by definition , y ๏€ฝ
1
y dA
๏ƒฒ
A
A
๏€ฝ pA
F ๏€ฝ ๏ง sin ๏ก yA ๏€ฝ pA
where p is the pressure at the centroid.
058:0160
Jianming Yang
Chapter 2
10
Fall 2012
To find the line of action of the force which we call the center of pressure (xcp, ycp) we
equate the moment of the resultant force to that of the distributed force about any
arbitrary axis.
ycp F ๏€ฝ ๏ƒฒ ydF ๏€ฝ ๏ง sin ๏ก ๏ƒฒ y 2dA
A
Note: dF ๏€ฝ ๏ง y sin ๏ก dA
y 2 dA ๏€ฝ I xx ๏€ฝ y A ๏€ซ I xx
(parallel axis theorem)
A
๏ƒฒA
2
๐ผ๐‘ฅ๐‘ฅ : moment of inertia about O-x
ฬ… : moment of inertia w.r.t. horizontal centroidal axis
๐ผ๐‘ฅ๐‘ฅ
๏ƒ 
2
ycp F ๏€ฝ๏€ฝ ycp๏ง sin ๏ก y A ๏€ฝ ๏ง sin ๏ก ๏ƒฆ๏ƒง y A ๏€ซ I xx ๏ƒถ๏ƒท
๏ƒจ
๏ƒธ
๏ƒ 
ycp ๏€ฝ y ๏€ซ
I xx
yA
๏ƒ 
xcp ๏€ฝ x ๏€ซ
I xy
yA
and similarly for xcp
๏€จ
xcp F ๏€ฝ ๏ƒฒ x dF ๏€ฝ ๏ง sin ๏ก ๏ƒฒ xydA ๏€ฝ ๏ง sin ๏ก x y A ๏€ซ I xy
A
A
where the product of inertia
๏€ฉ
๏ƒฒA xydA ๏€ฝ I xy ๏€ฝ x yA ๏€ซ I xy (parallel axis theorem)
Note that the coordinate system in the textbook has its origin at the centroid and is related
to the one just used by:
xtextbook ๏€ฝ x ๏€ญ x and ytextbook ๏€ฝ ๏€ญ( y ๏€ญ y)
058:0160
Jianming Yang
Chapter 2
11
Fall 2012
To obtain equation (2.29) in the textbook:
๐‘ฅCP,textbook = ๐‘ฅ๐‘๐‘ โˆ’ ๐‘ฅฬ… = (๐‘ฅฬ… +
ฬ…
๐ผ๐‘ฅ๐‘ฆ
๐‘ฆฬ…๐ด
) โˆ’ ๐‘ฅฬ… =
๐‘ฆCP,textbook = โˆ’(๐‘ฆ๐‘๐‘ โˆ’ ๐‘ฆฬ…) = โˆ’ [(๐‘ฆฬ…
ฬ…
๐ผ๐‘ฅ๐‘ฆ
๐‘ฆฬ…๐ด
ฬ…
๐ผ๐‘ฅ๐‘ฅ
+ ฬ…๐ด ) โˆ’
๐‘ฆ
=(
๐‘ฆฬ…]
ฬ…
๐ผ๐‘ฅ๐‘ฆ
=
ฬ… sin ๐œƒ
๐ผ๐‘ฅ๐‘ฆ
โ„Ž๐‘ โ„sin ๐œƒ )๐ด
โ„Ž๐‘ ๐ด
ฬ…
ฬ…
๐ผ๐‘ฅ๐‘ฅ
๐ผ๐‘ฅ๐‘ฅ
= โˆ’ ฬ…๐ด = โˆ’ ( โ„
๐‘ฆ
โ„Ž๐‘ sin ๐œƒ )๐ด
=โˆ’
ฬ… sin ๐œƒ
๐ผ๐‘ฅ๐‘ฅ
โ„Ž๐‘ ๐ด
Notice:
โ„Ž๐‘ here is the same โ„Ž๐ถ๐บ in the textbook: โ„Ž๐‘ = ๐‘ฆฬ… sin ๐œƒ
๐ผ๐‘ฅ๐‘ฅ is the moment of inertia w.r.t. horizontal centroidal axis, which is ๐ผ๐‘ฅ๐‘ฅ in the textbook
ฬ… is the product of inertia w.r.t. horizontal centroidal axis, which is โˆ’๐ผ๐‘ฅ๐‘ฆ in the textbook
๐ผ๐‘ฅ๐‘ฆ
because the y axis has a different direction when using this definition: ๐ผ๐‘ฅ๐‘ฆ = โˆซ๐ด ๐‘ฅ๐‘ฆ๐‘‘๐ด
Therefore
๐‘ฅCP,textbook = โˆ’
๐‘ฆCP,textbook = โˆ’
๐ผ๐‘ฅ๐‘ฆ sin ๐œƒ
โ„Ž๐ถ๐บ ๐ด
๐ผ๐‘ฅ๐‘ฅ sin ๐œƒ
โ„Ž๐ถ๐บ ๐ด
058:0160
Jianming Yang
Chapter 2
12
Fall 2012
With the equations in the textbook, the origin
of the coordinates is defined at CG,
8ft
๐œƒ = cosโˆ’1 10ft
โ„Ž๐ถ๐บ = 12ft;
๐ด = width × length = 5ft × 10ft = 50ft 2
Therefore,
๐น = ๐›พโ„Ž๐ถ๐บ ๐ด
The Gate is rectangular, from Fig. 2.13a
๐‘๐ฟ3
๐ผ๐‘ฅ๐‘ฆ = 0, ๐ผ๐‘ฅ๐‘ฅ =
12
From Eq. (2.29)
๐‘ฅCP = โˆ’
๐‘ฆCP = โˆ’
๐ผ๐‘ฅ๐‘ฆ sin ๐œƒ
โ„Ž๐ถ๐บ ๐ด
๐ผ๐‘ฅ๐‘ฅ sin ๐œƒ
โ„Ž๐ถ๐บ ๐ด
=0
=โ€ฆ
058:0160
Jianming Yang
Chapter 2
13
Fall 2012
6 Hydrostatic Forces on Curved Surfaces
F ๏€ฝ ๏€ญ๏ƒฒ pn dA
In general,
A
Horizontal Components:
Fx ๏€ฝ F ๏ƒ— i ๏€ฝ ๏€ญ ๏ƒฒ pn ๏ƒ— i dA
A
Fy ๏€ฝ ๏€ญ ๏ƒฒ
Ay
p dAy
๐‘‘๐ด๐‘ฅ = ๐ง โˆ™ ๐ข๐‘‘๐ด = projection of ๐ง๐‘‘๐ด
onto a plane perpendicular to x
direction
That is, the horizontal component of force acting on a curved surface is equal to the force
acting on a vertical projection of that surface (which includes both magnitude and line of
action) and can be determined by the methods developed for plane surfaces.
Fz ๏€ฝ ๏€ญ๏ƒฒ pn ๏ƒ— k dA ๏€ฝ ๏€ญ๏ƒฒ
A
Az
p dAz ๏€ฝ ๏ง ๏ƒฒ h dAz ๏€ฝ ๏ง๏ค๏€ข
Az
Where h is the depth to any element area dA of the surface. That is, the vertical
component of force acting on a curved surface is equal to the net weight of the total
column of fluid directly above the curved surface and has a line of action through the
centroid of the fluid volume.
058:0160
Jianming Yang
Chapter 2
14
Fall 2012
Example Drum Gate
p ๏€ฝ ๏งh ๏€ฝ ๏งR๏€จ1๏€ญ cos ๏ฑ ๏€ฉ
n ๏€ฝ ๏€ญ sin ๏ฑ i ๏€ซ cos๏ฑ k
dA ๏€ฝ lRd๏ฑ
๏ฐ
F ๏€ฝ ๏€ญ ๏ƒฒ pn dA ๏€ฝ ๏€ญ ๏ƒฒ ๏งR๏€จ1 ๏€ญ cos ๏ฑ ๏€ฉ๏€จ๏€ญ sin ๏ฑ i ๏€ซ cos ๏ฑ k ๏€ฉ lRd
๏ฑ
๏€ด๏€ฒ๏€ด๏€ด๏€ด
๏€ณ๏ป
A
0 ๏€ฑ๏€ด๏€ฒ๏€ด๏€ณ ๏€ฑ๏€ด๏€ด
p
dA
n
๏ฐ
1
๏ฐ
๏ฐ๏ƒถ
๏ƒฆ
F ๏ƒ— i ๏€ฝ Fx ๏€ฝ ๏ง l R 2 ๏ƒฒ ๏€จ1 ๏€ญ cos ๏ฑ ๏€ฉ sin ๏ฑd๏ฑ ๏€ฝ ๏ง l R 2 ๏ƒง ๏€ญ cos ๏ฑ 0 ๏€ซ cos 2๏ฑ 0 ๏ƒท ๏€ฝ 2๏ง l R 2
0
4
๏ƒจ
๏ƒธ
๏€ฝ ๏ง๏ป๏ป
R2 Rl
p
๏ƒž Same force as that on projection of gate onto vertical plane
A
๏ฐ
Fz ๏€ฝ ๏€ญ๏ง l R 2
0
๏ƒฒ
2๏ƒฆ
๏ฑ
๏ฐ
๏€จ1 ๏€ญ cos๏ฑ ๏€ฉcos๏ฑd๏ฑ ๏€ฝ ๏€ญ๏ง l R ๏ƒง sin ๏ฑ ๏€ญ ๏€ญ 1 sin 2๏ฑ ๏ƒถ๏ƒท
2 4
๏ƒจ
๏ƒธ0
๏ƒฆ ๏ฐR 2 ๏ƒถ
๏ƒท ๏€ฝ ๏ง๏€ข ๏ƒž Net weight of water above surface
๏€ฝ ๏งlR
๏€ฝ ๏งl ๏ƒง
๏ƒง
๏ƒท
2
๏ƒจ 2 ๏ƒธ
1
1 ๏ƒถ
๏ƒฆ
๏ƒถ
๏ƒฆ
F1 ๏€ฝ ๏€ญ๏ง ๏ƒง 2 R 2l ๏€ญ ๏ฐR 2l ๏ƒท / 2 ๏€ฝ ๏€ญ๏งlR 2 ๏ƒง 2 ๏€ญ ๏ฐ ๏ƒท / 2
2
2 ๏ƒธ
๏ƒจ
๏ƒธ
๏ƒจ
Another approach:
1
๏ƒฆ1
๏ƒถ
F2 ๏€ฝ ๏ง ๏ƒง ๏ฐR 2l ๏€ซ F1 ๏ƒท
๏ƒž
F ๏€ฝ F2 ๏€ญ F1 ๏€ฝ ๏ฐR 2l๏ง
2
๏ƒจ2
๏ƒธ
2
๏ฐ
058:0160
Jianming Yang
Fall 2012
Chapter 2
15
7 Hydrostatic Forces in Layered Fluids
Formulas for plane and curved surfaces apply separately to each layer: compute and sum
the separate layer forces and moments.
058:0160
Jianming Yang
Fall 2012
8 Buoyancy and Stability
8.1 Archimedes Principle
๐น๐ต = ๐น๐‘‰(2) โˆ’ ๐น๐‘‰(1)
= fluid weight above 2ABC โ€“ fluid weight above 1ADC
= weight of fluid equivalent to body volume
In general,
๐น๐ต = ๐œŒfluid ๐‘”โˆ€displaced
(โˆ€displaced = displaced fluid volume).
The line of action is through the centroid of the displaced
volume, which is called the center of buoyancy.
Example: Oscillating floating block
Weight of the block ๐‘Š = ๐œŒ๐‘ ๐ฟ๐‘โ„Ž๐‘” = ๐‘š๐‘” = ๐›พโˆ€0 where
โˆ€0 is displaced water volume by the block and ๐›พ is the
specific weight of the liquid, waterline area ๐ด๐‘ค๐‘™ = ๐ฟ๐‘.
๐‘Š = ๐ต โ‡’ ๐œŒ๐‘ ๐ฟ๐‘โ„Ž๐‘” = ๐œŒ๐‘ค ๐ฟ๐‘๐‘‘๐‘”
๐œŒ
โ‡’ ๐‘‘ = ๐‘โ„๐œŒ๐‘ค โ„Ž
Instantaneous displaced water volume:
Chapter 2
16
058:0160
Jianming Yang
Chapter 2
17
Fall 2012
โˆ€= โˆ€0 โˆ’ ๐‘ฆ๐ด๐‘ค๐‘™
โˆ‘ ๐น๐‘‰ = ๐‘š๐‘ฆฬˆ = ๐ต โˆ’ ๐‘Š = ๐›พโˆ€ โˆ’ ๐›พโˆ€0 = โˆ’๐›พ๐ด๐‘ค๐‘™ ๐‘ฆ
๐‘š๐‘ฆฬˆ + ๐›พ๐ด๐‘ค๐‘™ ๐‘ฆ = 0
๐‘ฆฬˆ +
๐›พ๐ด๐‘ค๐‘™
๐‘š
๐‘ฆ=0
Solution for this homogeneous linear 2nd-order ODE:
๐‘ฆ = ๐ดcos๐œ”๐‘ก + ๐ตsin๐œ”๐‘ก
Use initial condition (๐‘ก = 0: ๐‘ฆ = ๐‘ฆ0 , ๐‘ฆฬ‡ = ๐‘ฆฬ‡ 0 ) to determine ๐ด and ๐ต:
๐‘ฆ = ๐‘ฆ0 cos๐œ”๐‘ก + ๐‘ฆ๐œ”ฬ‡ 0sin๐œ”๐‘ก
Where the angular frequency
๐›พ๐ด๐‘ค๐‘™
๐œ”=โˆš
period
๐‘š
๐‘‡=
2๐œ‹
๐œ”
= 2๐œ‹โˆš
๐‘š
๐›พ๐ด๐‘ค๐‘™
Spar Buoy
We can increase period ๐‘‡ by increasing block mass ๐‘š
and/or decreasing waterline area ๐ด๐‘ค๐‘™ .
http://upload.wikimedia.org/wikipedia/com
mons/0/03/Lateral_view_of_spar-buoy.png
058:0160
Jianming Yang
Chapter 2
18
Fall 2012
8.2 Stability: Immersed Bodies
Stable
Neutral
Unstable
Condition for static equilibrium: (1) โˆ‘Fv=0 and (2) โˆ‘M=0
Condition (2) is met only when C and G coincide, otherwise we can have either a righting
moment (stable) or a heeling moment (unstable) when the body is heeled.
058:0160
Jianming Yang
Fall 2012
Chapter 2
19
8.3 Stability: Floating Bodies
For a floating body the situation is slightly more complicated since the center of
buoyancy will generally shift when the body is rotated, depending upon the shape of the
body and the position in which it is floating.
The center of buoyancy (centroid of the displaced volume) shifts laterally to the right for
the case shown because part of the original buoyant volume aOc is transferred to a new
buoyant volume bOd.
The point of intersection of the lines of action of the buoyant force before and after heel
is called the metacenter M and the distance GM is called the metacentric height.
If GM is positive, that is, if M is above G, then the ship is stable;
however, if GM is negative, then the ship is unstable.
058:0160
Jianming Yang
Chapter 2
20
Fall 2012
Consider a ship which has taken a small angle of heel ๐œƒ
1. evaluate the lateral displacement
of the center of buoyancy, ๐ต๐ตโ€ฒ
2. then from trigonometry, we can
solve for GM and evaluate the
stability of the ship
Recall that the center of buoyancy is
at the centroid of the displaced
volume of fluid (moment of volume
about y-axis โ€“ ship centerplane)
This can be evaluated conveniently as follows:
๐‘ฅฬ… โˆ€= โˆซ๐‘๐‘‚๐‘‘๐‘’๐‘Ž ๐‘ฅ๐‘‘โˆ€ + โˆซ๐‘‚๐‘๐‘‘ ๐‘ฅ๐‘‘โˆ€ โˆ’ โˆซ๐‘๐‘‚๐‘Ž ๐‘ฅ๐‘‘โˆ€ = 0 + โˆซ๐‘‚๐‘๐‘‘ ๐‘ฅ (๐ฟ๐‘‘๐ด) โˆ’ โˆซ๐‘๐‘‚๐‘Ž ๐‘ฅ(๐ฟ๐‘‘๐ด)
= 0 + โˆซ๐‘‚๐‘๐‘‘ ๐‘ฅ๐ฟ(๐‘ฅtan๐œƒ๐‘‘๐‘ฅ ) โˆ’ โˆซ๐‘๐‘‚๐‘Ž ๐‘ฅ๐ฟ(โˆ’๐‘ฅtan๐œƒ๐‘‘๐‘ฅ )
= tan๐œƒ โˆซwaterline ๐‘ฅ 2 ๐‘‘๐ดwaterline = ๐ผ๐‘‚ tan๐œƒ
058:0160
Jianming Yang
Chapter 2
21
Fall 2012
โˆซ๐‘๐‘‚๐‘‘๐‘’๐‘Ž ๐‘ฅ๐‘‘โˆ€: moment of โˆ€ before heel (goes to zero due to symmetry of original buoyant
volume about centerplane)
๐‘‘๐ด = ๐‘ฆ๐‘‘๐‘ฅ = ๐‘ฅtan๐œƒ๐‘‘๐‘ฅ
๐ผ๐‘‚ = โˆซ๐‘ค๐‘™ ๐‘ฅ 2 ๐‘‘๐ด๐‘ค๐‘™ : area moment of inertia of ship waterline about its tilt axis ๐‘‚
๐‘ฅฬ… โˆ€= ๐ผ๐‘‚ tan๐œƒ
๐ต๐ตโ€ฒ = ๐‘ฅฬ… =
๐ต๐‘€ =
๐‘ฅฬ…
tan๐œƒ
=
๐บ๐‘€ =
๐ผ๐‘‚
โˆ€
๐ผ๐‘‚
โˆ€
๐ผ๐‘‚ tan๐œƒ
โˆ€
= ๐บ๐‘€ + ๐ต๐บ
โˆ’ ๐ต๐บ
This equation is used to determine the
stability of floating bodies:
๏‚ท If GM is positive, the body is stable
๏‚ท If GM is negative, the body is unstable
058:0160
Jianming Yang
Fall 2012
Chapter 2
22
8.4 Roll
The rotation of a ship about the longitudinal
axis through the center of gravity.
Consider symmetrical ship heeled to a very
small angle ฮธ. Solve for the subsequent
motion due only to hydrostatic and
gravitational forces.
๐…๐ต = (cos ๐œƒ ๐ฃ โˆ’ sin๐œƒ๐ข)๐œŒ๐‘”โˆ€
๐Œ๐‘” = ๐ซ × ๐…๐ต = (โˆ’๐บ๐ต๐ฃ + ๐ต๐ตโ€ฒ ๐ข) × (cos ๐œƒ ๐ฃ โˆ’ sin๐œƒ๐ข)๐œŒ๐‘”โˆ€
= (โˆ’๐บ๐ตsin๐œƒ + ๐ต๐ตโ€ฒ cos ๐œƒ)๐œŒ๐‘”โˆ€๐ค = (โˆ’๐บ๐ตsin๐œƒ + ๐ต๐‘€ tan ๐œƒ cos ๐œƒ)๐œŒ๐‘”โˆ€๐ค
= (โˆ’๐บ๐ต + ๐ต๐‘€)sin๐œƒ๐œŒ๐‘”โˆ€๐ค = ๐บ๐‘€sin๐œƒ๐œŒ๐‘”โˆ€๐ค
Note: recall that ๐‘€๐‘‚ = |๐…|๐‘‘, where ๐‘‘ is the perpendicular distance from ๐‘‚ to the line of
action of ๐…: ๐‘€๐บ = ๐บ๐‘“๐œŒ๐‘”โˆ€= ๐บ๐‘€sin๐œƒ๐œŒ๐‘”โˆ€
Angular momentum:
โˆ‘ ๐‘€๐บ = โˆ’๐ผ๐œƒฬˆ
๐ผ = mass moment of inertia about long axis through ๐บ
๐œƒฬˆ= angular acceleration
058:0160
Jianming Yang
Chapter 2
23
Fall 2012
๐ผ๐œƒฬˆ + ๐บ๐‘€sin๐œƒ๐œŒ๐‘”โˆ€= 0
ฬˆ + ๐‘š๐‘”๐บ๐‘€๐œƒ = 0
For small ๐œƒ: ๐ผ๐œƒฬˆ + ๐บ๐‘€๐œŒ๐‘”โˆ€๐œƒ = 0 โ‡’ ๐œƒฬˆ + ๐บ๐‘€๐œŒ๐‘”โˆ€
๐œƒ
=
0
โ‡’
๐œƒ
๐ผ
๐ผ
Definition of radius of gyration: ๐‘˜ = โˆš๐ผโ„๐‘š
๐‘˜ 2 = ๐ผโ„๐‘š โ‡’ ๐‘š๐‘˜ 2 = ๐ผ โ‡’
๐‘š๐‘”๐บ๐‘€
๐ผ
=
๐‘”๐บ๐‘€
๐‘˜2
The solution to equation ๐œƒฬˆ + ๐‘”๐บ๐‘€
๐œƒ = 0 is,
๐‘˜2
๐œƒ(๐‘ก) = ๐œƒ0 cos ๐œ”๐‘ก +
๐œƒฬ‡0
sin ๐œ”๐‘ก
๐œ”
= ๐œƒ0 cos ๐œ”๐‘ก
where ๐œƒ0 = the initial heel angle, ๐œƒฬ‡0 = 0 for no initial velocity, the natural frequency
๐‘”๐บ๐‘€
๐œ”=โˆš
๐‘˜2
=
โˆš๐‘”๐บ๐‘€
๐‘˜
Simple (undamped) harmonic oscillation with period of the motion: ๐‘‡ =
2๐œ‹
๐œ”
=
2๐œ‹๐‘˜
โˆš๐‘”๐บ๐‘€
Note that large GM decreases the period of roll, which would make for an uncomfortable
boat ride (high frequency oscillation).
Earlier we found that GM should be positive if a ship is to have transverse stability and,
generally speaking, the stability is increased for larger positive GM. However, the
present example shows that one encounters a โ€œdesign tradeoffโ€ since large GM decreases
the period of roll, which makes for an uncomfortable ride.
058:0160
Jianming Yang
Chapter 2
24
Fall 2012
9 Case (2): Rigid Body Translation or Rotation
In rigid body motion, all particles are in combined translation and/or rotation and
there is no relative motion between particles; consequently, there are no strains or strain
rates and the viscous term drops out of the N-S equation.
โˆ‡๐‘ = ๐œŒ(๐  โˆ’ ๐š)
from which we see that โˆ‡๐‘ acts in the direction of (๐  โˆ’ ๐š), and lines of constant pressure
must be perpendicular to this direction (by definition, โˆ‡๐‘“ is perpendicular to ๐‘“ = const.).
For the general case of rigid body translation/rotation of fluid shown in the figure, if the
center of rotation is at ๐‘‚ where ๐• = ๐•0 , the velocity of any arbitrary point ๐‘ƒ is:
๐• = ๐•0 + ๐›€ × ๐ซ0
where ๐›€ = the angular velocity vector, and the acceleration is:
๐‘‘๐•
๐‘‘๐‘ก
=๐š=
First term =
Second term =
Third term =
๐‘‘๐•0
๐‘‘๐‘ก
+ ๐›€ × (๐›€ × ๐ซ0 ) +
๐‘‘๐›€
๐‘‘๐‘ก
× ๐ซ0
acceleration of ๐‘‚
centripetal acceleration of ๐‘ƒ relative to ๐‘‚
linear acceleration of ๐‘ƒ due to ๐›€
Usually, all these terms are not present. In fact, fluids can rarely move in rigid body
motion unless restrained by confining walls for a long time.
058:0160
Jianming Yang
Chapter 2
25
Fall 2012
9.1 Uniform Linear Acceleration
โˆ‡๐‘ = ๐œŒ(๐  โˆ’ ๐š) = โˆ’๐œŒ[(๐‘” + ๐‘Ž๐‘ง )๐ค + ๐‘Ž๐‘ฅ ๐ข] = const.
๐œ•๐‘
๐œ•๐‘ฅ
1. ๐‘Ž๐‘ฅ < 0,
2. ๐‘Ž๐‘ฅ > 0,
= โˆ’๐œŒ๐‘Ž๐‘ฅ
๐‘ increase in +๐‘ฅ
๐‘ decrease in +๐‘ฅ
๐œ•๐‘
๐œ•๐‘ง
= โˆ’๐œŒ(๐‘” + ๐‘Ž๐‘ง )
1. ๐‘Ž๐‘ง > 0,
๐‘ decrease in +๐‘ง
2. ๐‘Ž๐‘ง < 0 and |๐‘Ž๐‘ง | < ๐‘”,
๐‘ decrease in +๐‘ง
3. ๐‘Ž๐‘ง < 0 and |๐‘Ž๐‘ง | > ๐‘”,
๐‘ increase in +๐‘ง
Unit vector in the direction of โˆ‡๐‘:
๐ฌ=|
โˆ‡๐‘
โˆ‡๐‘
=โˆ’
|
(๐‘”+๐‘Ž๐‘ง )๐ค+๐‘Ž๐‘ฅ ๐ข
1โ„2
[(๐‘”+๐‘Ž๐‘ง )2 +๐‘Ž๐‘ฅ2 ]
Lines of constant pressure are perpendicular to โˆ‡๐‘.
Angle between the surface of constant pressure and the ๐‘ฅ axes: ๐œƒ = tanโˆ’1
๐‘Ž๐‘ฅ
๐‘”+๐‘Ž๐‘ง
In general the rate of increase of pressure in the direction (๐  โˆ’ ๐š) is given by:
๐‘‘๐‘
๐‘‘๐‘ 
= โˆ‡๐‘ โˆ™ ๐ฌ = ๐œŒ[(๐‘” + ๐‘Ž๐‘ง )2 + ๐‘Ž๐‘ฅ2 ]1โ„2 = ๐œŒ๐บ
๐‘ = ๐œŒ๐บ๐‘  + const. = ๐œŒ๐บ๐‘ 
gage pressure
.
058:0160
Jianming Yang
Chapter 2
26
Fall 2012
9.2 Rigid Body Rotation
Consider rotation of the fluid about the ๐‘ง axis without any translation.
๐š = ๐›€ × (๐›€ × ๐ซ0 ) = โˆ’๐‘Ÿฮฉ2 ๐ข๐‘Ÿ
โˆ‡๐‘ = ๐œŒ(๐  โˆ’ ๐š) = ๐œŒ(โˆ’๐‘”๐’Œ + ๐‘Ÿฮฉ2 ๐ข๐‘Ÿ )
๐œ•๐‘
๐œ•๐‘Ÿ
= ๐œŒ๐‘Ÿฮฉ2 ,
๐œ•๐‘
๐œ•๐‘ง
= โˆ’๐œŒ๐‘” = โˆ’๐›พ
and
1
๐‘ = ๐œŒ๐‘Ÿ 2 ฮฉ2 + ๐‘“(๐‘ง) + ๐‘
๐œ•๐‘
2
= ๐‘“ โ€ฒ = โˆ’๐›พ โ‡’ ๐‘ = โˆ’๐›พ๐‘ง + ๐‘“(๐‘Ÿ) + ๐‘
๐œ•๐‘ง
โ‡’ ๐‘“(๐‘ง) = โˆ’๐›พ๐‘ง
1 2 2
๐‘ = ๐œŒ๐‘Ÿ ฮฉ โˆ’ ๐›พ๐‘ง + const.
2
The constant is determined by specifying the pressure at one point; say,
๐‘ = ๐‘0 at (๐‘Ÿ, ๐‘ง) = (0,0)
1
๐‘ = ๐‘0 โˆ’ ๐›พ๐‘ง + ๐œŒ๐‘Ÿ 2 ฮฉ2 (Note: Pressure is linear in ๐‘ง and parabolic in ๐‘Ÿ)
2
Curves of constant pressure are given by:
๐‘ง=
๐‘0 โˆ’๐‘
๐›พ
+
๐‘Ÿ 2 ฮฉ2
2๐‘”
= ๐‘Ž + ๐‘๐‘Ÿ 2
which are paraboloids of revolution, concave upward, with their minimum points on the
axis of rotation.
058:0160
Jianming Yang
Chapter 2
27
Fall 2012
The position of the free surface is found, as it is for linear acceleration, by conserving the
volume of fluid.
Unit vector in the direction of โˆ‡๐‘:
๐ฌ=
โˆ‡๐‘
|โˆ‡๐‘|
=
โˆ’๐›พ๐ค+๐œŒ๐‘Ÿฮฉ2 ๐ข๐‘Ÿ
โˆ’ [ 2 ( 2)2 ]1โ„2
๐›พ + ๐œŒ๐‘Ÿฮฉ
๐‘‘๐‘ง
๐‘”
Slope of ๐ฌ: tan ๐œƒ =
๐‘‘๐‘Ÿ
=
๐‘Ÿฮฉ2
.
(๐œƒ is the angle between the surface of constant
pressure and the ๐‘ฅ axis)
i.e.,
๐‘Ÿ = ๐ถ1 exp (โˆ’
ฮฉ2 ๐‘ง
๐‘”
)
is the equation of โˆ‡๐‘ surfaces.
058:0160
Jianming Yang
Chapter 2
28
Fall 2012
10 Case (3): Pressure Distribution in Irrotational Flow
Potential flow solutions also solutions of NS under such conditions:
1. If viscous effects are neglected, Navier-Stokes equation becomes Euler equation:
๐œ•๐•
๐œŒ ( + ๐• โˆ™ โˆ‡๐•) = ๐œŒ๐  โˆ’ โˆ‡๐‘
๐œ•๐•
๐œ•๐‘ก
๐œ•๐‘ก
1
+ โˆ‡ ( ๐• โˆ™ ๐•) โˆ’ ๐• × (๐› × ๐•) =
๐œŒ๐ โˆ’โˆ‡๐‘
2
๐œŒ
1
= โˆ’ โˆ‡(๐‘ + ๐œŒ๐‘”๐‘ง)
๐œŒ
1
Vector calculus identity: โˆ‡ ( ๐• โˆ™ ๐•) = ๐• โˆ™ โˆ‡๐• + ๐• × (๐› × ๐•)
2
2. If ๏ฒ = const.,
๐œ•๐•
๐œ•๐‘ก
+ โˆ‡(
3. Assume a steady flow:
๐‘‰2
2
๐œ•
๐œ•๐‘ก
๐‘
+ + ๐‘”๐‘ง) = ๐• × ๐›š
๐œŒ
(๐‘‰ 2 = ๐• โˆ™ ๐•)
=0
โˆ‡(
๐‘‰2
2
๐‘
+ + ๐‘”๐‘ง) = โˆ‡๐ต = ๐• × ๐›š
๐œŒ
Consider: โˆ‡๐ต perpendicular to ๐ต = const., also ๐• × ๐›š perpendicular to ๐• and ๐›š.
Stream lines ๐ž๐‘  : ๐• × ๐ž๐‘  = 0; vortex lines ๐ž๐‘ฃ : ๐›š × ๐ž๐‘ฃ = 0
๐ž๐‘  โˆ™ โˆ‡๐ต =
๐œ•๐ต
๐œ•๐‘ 
= ๐ž๐‘  โˆ™ (๐• × ๐›š) = ๐›š โˆ™ (๐ž๐‘  × ๐•) = 0
๐ž๐‘ฃ โˆ™ โˆ‡๐ต = ๐ž๐‘ฃ โˆ™ (๐• × ๐›š) = ๐• โˆ™ (๐›š × ๐ž๐‘  ) = 0
Therefore, ๐ต =
๐‘‰2
2
๐‘
+ + ๐‘”๐‘ง = const. contains streamlines and vortex lines:
๐œŒ
058:0160
Jianming Yang
Chapter 2
29
Fall 2012
1. Assuming irrotational flow: ๐›š = 0
โˆ‡๐ต = 0
๐ต = const. (everywhere same constant)
2. Unsteady irrotational flow
๐• = โˆ‡๐œ‘
๐‘‰ 2 = โˆ‡๐œ‘ โˆ™ โˆ‡๐œ‘
โˆ‡(
๐œ•๐œ‘
๐œ•๐‘ก
+
๐‘‰2
2
๐‘
+ + ๐‘”๐‘ง) = 0
๐œŒ
๐œ•๐œ‘ ๐‘‰ 2 ๐‘
+
+ + ๐‘”๐‘ง = ๐ต(๐‘ก)
๐œ•๐‘ก
2 ๐œŒ
๐ต(๐‘ก) is a time-dependent constant.
Alternate derivation using streamline coordinates:
๐• = ๐‘ฃ๐‘  (๐‘ , ๐‘ก)๐ž๐‘  + ๐‘ฃ๐‘› ๐ž๐‘› = ๐‘ฃ๐‘  (๐‘ , ๐‘ก)๐ž๐‘ 
๐œ•
โˆ‡=
๐š=
=[
๐ž๐‘  +
๐œ•๐‘ 
๐ท๐•
๐ท๐‘ก
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ก
=
๐œ•
๐ž
๐œ•๐‘› ๐‘›
๐œ•๐•
๐œ•๐‘ก
+ ๐• โˆ™ โˆ‡๐•
๐ž๐‘  + ๐‘ฃ๐‘ 
๐œ•๐ž๐‘ 
๐œ•๐‘ก
] + ๐‘ฃ๐‘  [
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ 
๐ž๐‘  + ๐‘ฃ๐‘ 
๐œ•๐ž๐‘ 
๐œ•๐‘ 
]
058:0160
Jianming Yang
Chapter 2
30
Fall 2012
Time increment:
๐œ•๐ž๐‘ 
Space increment:
๐š=[
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ก
๐œ•๐‘ฃ๐‘›
โˆ’
๐œ•๐‘ก
+ ๐‘ฃ๐‘ 
๐œ•๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ 
=
๐œ•๐œƒ
๐ž
๐œ•๐‘ก ๐‘›
๐œ•๐œƒ
โˆ’ ๐ž๐‘›
๐œ•๐‘ 
1
= โˆ’ ๐ž๐‘›
] ๐ž๐‘  + [โˆ’๐‘ฃ๐‘ 
๐‘…
๐œ•๐œƒ
๐œ•๐‘ก
โˆ’
๐‘ฃ๐‘ 2
๐‘…
] ๐ž๐‘›
: local ๐‘Ž๐‘  in the direction of flow
๐œ•๐‘ก
๐‘ฃ๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ก
๐œ•๐ž๐‘ 
=โˆ’
= โˆ’๐‘ฃ๐‘ 
๐œ•๐‘ฃ๐‘ 
๐œ•๐‘ 
๐‘ฃ๐‘ 2
๐‘…
๐œ•๐œƒ
๐œ•๐‘ก
: local ๐‘Ž๐‘› normal to the direction of flow
: convective ๐‘Ž๐‘  due to convergence/divergence of streamlines
: normal ๐‘Ž๐‘› due to streamline curvature
Euler Equation: ๐œŒ๐š = โˆ’โˆ‡(๐‘ + ๐œŒ๐‘”๐‘ง)
๐œ•๐‘ฃ
Steady flow ๐‘ -direction equation: ๐œŒ๐‘ฃ๐‘  ๐‘  = โˆ’
๐œ•๐‘ 
๐œ•
๐œ•๐‘ 
(
๐‘ฃ๐‘ 2
2
๐œ•
๐œ•๐‘ 
(๐‘ + ๐œŒ๐‘”๐‘ง)
๐‘
+ + ๐‘”๐‘ง) = 0, i.e., B=const. along streamline
๐œŒ
Steady flow ๐‘›-direction equation: โˆ’๐œŒ
โˆ’โˆซ
๐‘ฃ๐‘ 2
๐‘…
๐‘
๐‘ฃ๐‘ 2
๐‘…
=โˆ’
๐œ•
๐œ•๐‘›
(๐‘ + ๐œŒ๐‘”๐‘ง)
๐‘‘๐‘› + + ๐‘”๐‘ง = const. across streamline
๐œŒ
058:0160
Jianming Yang
Fall 2012
Chapter 2
31
11 Flow Patterns: Streamlines, Streaklines, Pathlines
1.) A Streamline is a curve everywhere tangent to the local velocity vector at a given
instant. Instantaneous lines; convinent to compute mathematically.
2.) A Pathline is the actual path traveled by an individual fluid particle over some time
period. Generated as the passage of time; convinent to generate experimentally.
058:0160
Jianming Yang
Fall 2012
Chapter 2
32
3.) A Streakline is the locus of particles that have earlier passed through a prescribed
point. Generated as the passage of time; convinent to generate experimentally.
4.) A Timeline is a set of fluid particles that form a line at a given instant.
Instantaneous lines; convinent to generate experimentally.
Note:
1. Streamlines, pathlines, and streaklines are identical in a steady flow.
2. For unsteady flow, streamline pattern changes with time, whereas pathlines and
streaklines are generated as the passage of time.
058:0160
Jianming Yang
Chapter 2
33
Fall 2012
11.1
Streamline
By definition we must have ๐• × ๐‘‘๐ซ = 0 which upon expansion yields the equation of the
streamlines for a given time ๐‘ก = ๐‘ก1
๐‘‘๐‘ฅ
๐‘ข
=
๐‘‘๐‘ฆ
๐‘ฃ
=
๐‘‘๐‘ง
๐‘ค
= ๐‘‘๐‘ 
๐‘  = integration parameter
So if (๐‘ข, ๐‘ฃ, ๐‘ค) is known, integrate with respect to ๐‘  for ๐‘ก = ๐‘ก1 with initial condition
(๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 , ๐‘ก0 ) at ๐‘  = 0 and then eliminate ๐‘ .
11.2
Pathline
The pathline is defined by integration of the relationship between velocity and
displacement.
๐‘‘๐‘ฅ
๐‘‘๐‘ก
=๐‘ข
๐‘‘๐‘ฆ
๐‘‘๐‘ก
=๐‘ฃ
๐‘‘๐‘ง
๐‘‘๐‘ก
=๐‘ค
Integrate ๐‘ข, ๐‘ฃ, ๐‘ค with respect to ๐‘ก using initial condition (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 , ๐‘ก0 ), then eliminate ๐‘ก.
11.3
Streakline
To find the streakline, use the integrated result for the pathline retaining time as a
parameter. Now, find the integration constant which causes the pathline to pass through
(๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) for a sequence of times ๐œ < ๐‘ก. Then eliminate ๐œ.
058:0160
Jianming Yang
Chapter 2
34
Fall 2012
Example: an idealized velocity distribution is given by:
๐‘ข=
๐‘ฅ
1+๐‘ก
๐‘ฃ=
๐‘ฆ
๐‘ค=0
1+2๐‘ก
calculate and plot: 1) the streamlines 2) the pathlines 3) the streaklines which pass
through (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) at ๐‘ก = 0.
1. First, note that since ๐‘ค = 0 there is no motion in the ๐‘ง direction and the flow is 2-D
๐‘‘๐‘ฅ
๐‘ฅ
๐‘‘๐‘ฆ
๐‘ฆ
=๐‘ข=
=๐‘ฃ=
๐‘‘๐‘ 
1+๐‘ก
๐‘ 
๐‘‘๐‘ 
๐‘ฅ = ๐ถ1 exp( )
1+๐‘ก
๐‘  = 0 at (๐‘ฅ0 , ๐‘ฆ0 ):
1+2๐‘ก
๐‘ 
๐‘ฆ = ๐ถ2 exp(
)
1+2๐‘ก
๐ถ1 = ๐‘ฅ0 ๐ถ2 = ๐‘ฆ0
and eliminating ๐‘ :
๐‘  = (1 + ๐‘ก)ln
๐‘ฅ
๐‘ฅ0
๐‘›
๐‘ฅ
= (1 + 2๐‘ก)ln
๐‘ฆ = ๐‘ฆ0 ( ) where ๐‘› =
๐‘ฅ0
๐‘ฆ
๐‘ฆ0
1+๐‘ก
1+2๐‘ก
This is the equation of the streamlines which pass through (๐‘ฅ0 , ๐‘ฆ0 ) for all times ๐‘ก.
๐‘ฆ
๐‘ก = 0,
๐‘ก = โˆž,
๐‘ฆ0
๐‘ฆ
๐‘ฆ0
=
๐‘ฅ
๐‘ฅ0
๐‘ฅ 1โ„2
=( )
๐‘ฅ0
058:0160
Jianming Yang
Chapter 2
35
Fall 2012
2. To find the pathlines we integrate
๐‘‘๐‘ฅ
๐‘‘๐‘ก
=๐‘ข=
๐‘ฅ
๐‘‘๐‘ฆ
1+๐‘ก
๐‘‘๐‘ก
=๐‘ฃ=
๐‘ฆ
1+2๐‘ก
๐‘
๐‘
๐‘ฅ = ๐ถ1 (1 + ๐‘ก) ๐‘ฆ = ๐ถ2 (1 + 2๐‘ก)1โ„2 (โˆซ
๐‘‘๐‘ฅ = ๐‘™๐‘›|๐‘Ž๐‘ฅ + ๐‘| + ๐ถ)
๐‘Ž๐‘ฅ+๐‘
๐‘Ž
๐‘ก = 0 (๐‘ฅ, ๐‘ฆ) = (๐‘ฅ0 , ๐‘ฆ0 ): ๐ถ1 = ๐‘ฅ0 ๐ถ2 = ๐‘ฆ0
now eliminate ๐‘ก between the equations for (๐‘ฅ, ๐‘ฆ)
๐‘ฆ = ๐‘ฆ0 [1 + 2 (
๐‘ฅ
๐‘ฅ0
โˆ’ 1)]
1โ„2
This is the pathline through (๐‘ฅ0 , ๐‘ฆ0 ) at ๐‘ก = 0 and does not coincide with the streamline
at ๐‘ก = 0.
3. To find the streakline, we use the pathline equations to find the family of particles
that have passed through the point (๐‘ฅ0 , ๐‘ฆ0 ) for all times ๐œ < ๐‘ก.
๐‘ฅ = ๐ถ1 (1 + ๐‘ก) ๐‘ฆ = ๐ถ2 (1 + 2๐‘ก)1โ„2
๐‘ฅ0 = ๐ถ1 (1 + ๐œ) ๐‘ฆ0 = ๐ถ2 (1 + 2๐œ)1โ„2
๐ถ1 =
๐‘ฅ=
๐‘ฅ0
1+๐œ
๐‘ฅ0
1+๐œ
(1 + ๐‘ก)
๐œ = (1 + ๐‘ก)
๐‘ฅ0
๐‘ฅ
๐‘ฆ0
1+2๐œ)1โ„2
๐‘ฆ
= ( 0)1โ„2 (1 + 2๐‘ก)1โ„2
1+2๐œ
1
๐‘ฆ0 2
๐ถ2 = (
๐‘ฆ
โˆ’ 1 = [(1 + 2๐‘ก) ( ) โˆ’ 1]
2
๐‘ฆ
058:0160
Jianming Yang
Chapter 2
36
Fall 2012
๐‘ฆ0 2
( ) =
๐‘ฆ
๐‘ก = 0:
1+2๐‘ก
๐‘ฅ
1+2[(1+๐‘ก)( 0 )โˆ’1]
๐‘ฅ
๐‘ฆ
๐‘ฆ0
= [1 + 2 (
๐‘ฅ0
๐‘ฅ
โˆ’ 1)]
โˆ’1โ„2
The streakline does not coincide with either the equivalent streamline or pathline.
Physically, the streakline reflects the streamline behavior before the specified time ๐‘ก =
0, while the pathline reflects the streamline behavior after ๐‘ก = 0.
058:0160
Jianming Yang
Chapter 2
37
Fall 2012
11.4
Stream Function
The stream function is a powerful tool for 2D flows in which ๐• is obtained by
differentiation of a scalar ๐›น which automatically satisfies the continuity equation.
Continuity equation:
say: ๐‘ข =
๐œ•
then:
๐•=
๐œ•๐‘ฅ
๐œ•๐›น
๐œ•๐‘ฆ
๐œ•๐›น
(
๐œ•๐›น
)+
๐œ•๐‘ฆ
๐œ•๐›น
๐œ•๐‘ฅ
๐œ•
๐œ•๐‘ฆ
+
๐œ•๐‘ฃ
=0
๐œ•๐‘ฅ
๐œ•๐‘ฆ
๐œ•๐›น
๐‘ฃ=โˆ’
๐œ•๐‘ฆ
๐ขโˆ’
๐œ•๐‘ข
(โˆ’
๐œ•๐‘ฅ
๐œ•๐›น
๐œ•๐‘ฅ
)=
๐œ•2 ๐›น
๐œ•๐‘ฅ๐œ•๐‘ฆ
โˆ’
๐œ•2 ๐›น
๐œ•๐‘ฅ๐œ•๐‘ฆ
=0
๐ฃ โ‡’ โˆ‡ × ๐• = ๐›š โ‡’ ๐œ”๐‘ง = ๐œ” = โˆ’โˆ‡2 ๐›น
2D vorticity transport equation:
๐œ•๐œ”
๐œ•๐‘ก
+๐‘ข
๐œ•๐œ”
๐œ•๐‘ฅ
+๐‘ฃ
๐œ•๐œ”
๐œ•๐‘ฆ
= ๐œˆโˆ‡2 ๐œ”
Replace ๐‘ข, ๐‘ฃ, ๐œ”:
๐œ•
๐œ•๐‘ก
2
(โˆ‡ ๐›น) +
๐œ•๐›น ๐œ•
(โˆ‡ ๐›น) โˆ’
๐œ•๐‘ฆ ๐œ•๐‘ฅ
๐œ•๐›น ๐œ•
Steady flow:
2
๐œ•๐‘ฆ ๐œ•๐‘ฅ
๐œ•๐›น ๐œ•
4
(โˆ‡ ๐›น) = ๐œˆโˆ‡ ๐›น
๐œ•๐‘ฅ ๐œ•๐‘ฆ
๐œ•๐›น ๐œ•
(โˆ‡2 ๐›น) โˆ’
2
๐œ•๐‘ฅ ๐œ•๐‘ฆ
4
(โˆ‡ ๐›น =
๐œ•4 ๐›น
๐œ•๐‘ฅ 4
+2
๐œ•4 ๐›น
๐œ•๐‘ฅ 2 ๐œ•๐‘ฆ 2
(โˆ‡2 ๐›น) = ๐œˆโˆ‡4 ๐›น
It is a single fourth-order scalar equation, which requires 4 boundary conditions
At infinity: ๐‘ข = ๐œ•๐›น/๐œ•๐‘ฆ = ๐‘ˆโˆž ๐‘ฃ = โˆ’๐œ•๐›น/๐œ•๐‘ฅ = 0
On body: ๐‘ข = ๐‘ฃ = 0 = ๐œ•๐›น/๐œ•๐‘ฆ = โˆ’๐œ•๐›น/๐œ•๐‘ฅ
+
๐œ•4 ๐›น
๐œ•๐‘ฆ 4
)
058:0160
Jianming Yang
Chapter 2
38
Fall 2012
11.4.1 Irrotational Flow
โˆ‡×๐•=0
โ‡’ โˆ‡2 ๐›น = 0
Second-order linear Laplace equation
At infinity ๐‘†โˆž : ๐›น = ๐‘ˆโˆž ๐‘ฆ + const.
On body ๐‘†๐ต : ๐›น = const.
11.4.2 Geometric Interpretation of ๐œณ
Besides its importance mathematically ๐›น also has
important geometric significance.
๐›น = const. = streamline
Recall definition of a streamline:
๐• × ๐‘‘๐ซ = 0
๐‘‘๐‘ฅ
๐‘ข
=
๐‘‘๐‘ฆ
๐‘ฃ
โ‡’
๐‘ข๐‘‘๐‘ฆ โˆ’ ๐‘ฃ๐‘‘๐‘ฅ = 0
Compare with ๐‘‘๐›น =
๐œ•๐›น
๐œ•๐‘ฅ
๐‘‘๐‘ฅ +
๐œ•๐›น
๐œ•๐‘ฆ
๐‘‘๐‘ฆ = โˆ’๐‘ฃ๐‘‘๐‘ฅ + ๐‘ข๐‘‘๐‘ฆ
i.e., ๐‘‘๐›น = 0 along a streamline
Or ๐›น = const. along a streamline and curves of constant ๐›น are the flow streamlines. If
we know ๐›น(๐‘ฅ, ๐‘ฆ) then we can plot ๐›น = const. curves to show streamlines.
058:0160
Jianming Yang
Chapter 2
39
Fall 2012
11.4.3 Physical Interpretation
๐‘›๐‘ฅ =
๐‘‘๐‘ฆ
๐‘‘๐‘ 
๐‘›๐‘ฆ = โˆ’
๐‘‘๐‘ฅ
๐‘‘๐‘ 
๐œ•๐›น
๐œ•๐›น
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
๐œ•๐›น
๐œ•๐›น
๐‘‘๐‘„ = ๐• โˆ™ ๐ง๐‘‘๐ด = (
๐ขโˆ’
๐ฃ) โˆ™ ( ๐ข โˆ’
๐ฃ) ๐‘‘(๐‘  โˆ™ 1) =
๐‘‘๐‘ฆ +
๐‘‘๐‘ฅ = ๐‘‘๐›น
๐œ•๐‘ฆ
๐œ•๐‘ฅ
๐‘‘๐‘ 
๐‘‘๐‘ 
๐œ•๐‘ฆ
๐œ•๐‘ฅ
i.e. change in ๐‘‘๐›น is the volume flux and along a streamline ๐‘‘๐‘„ = 0.
Consider flow between two streamlines
๐ต
๐ต
๐‘„๐ด๐ต = โˆซ๐ด ๐• โˆ™ ๐ง๐‘‘๐ด = โˆซ๐ด ๐‘‘๐›น = ๐›น๐ต โˆ’ ๐›น๐ด
058:0160
Jianming Yang
Chapter 2
40
Fall 2012
11.4.4 Incompressible Plane Flow in Polar Coordinates
Continuity equation:
or
๐œ•
๐œ•๐‘Ÿ
(๐‘Ÿ๐‘ฃ๐‘Ÿ ) +
say: ๐‘ฃ๐‘Ÿ =
then:
๐œ•
๐œ•๐‘Ÿ
๐œ•๐‘ฃ๐œƒ
๐œ•๐œƒ
1 ๐œ•๐›น
๐‘Ÿ ๐œ•๐œƒ
1 ๐œ•๐›น
(๐‘Ÿ
๐‘Ÿ ๐œ•๐œƒ
1 ๐œ•
๐‘Ÿ ๐œ•๐‘Ÿ
(๐‘Ÿ๐‘ฃ๐‘Ÿ ) +
๐‘Ÿ ๐œ•๐œƒ
=0
=0
๐‘ฃ๐œƒ = โˆ’
)+
1 ๐œ•๐‘ฃ๐œƒ
๐œ•
๐œ•๐œƒ
(โˆ’
๐œ•๐›น
๐œ•๐‘Ÿ
๐œ•๐›น
๐œ•๐‘Ÿ
)=0
As before ๐‘‘๐›น = 0 along a streamline and
๐‘‘๐‘„ = ๐‘‘๐›น
Volume flux = change in stream function
11.4.5 Incompressible Axisymmetric Flow
Continuity equation:
say: ๐‘ฃ๐‘Ÿ = โˆ’
then:
1 ๐œ•
๐‘Ÿ ๐œ•๐‘Ÿ
(๐‘Ÿ
1 ๐œ•๐›น
๐‘Ÿ ๐œ•๐‘ง
โˆ’1 ๐œ•๐›น
๐‘Ÿ ๐œ•๐‘ง
1 ๐œ•
๐‘Ÿ ๐œ•๐‘Ÿ
๐‘ฃ๐‘ง =
)+
(๐‘Ÿ๐‘ฃ๐‘Ÿ ) +
๐œ•๐‘ฃ๐‘ง
๐œ•๐‘ง
=0
1 ๐œ•๐›น
๐‘Ÿ ๐œ•๐‘Ÿ
๐œ• 1 ๐œ•๐›น
(
๐œ•๐‘ง ๐‘Ÿ ๐œ•๐‘Ÿ
)=0
As before ๐‘‘๐›น = 0 along a streamline and
๐‘‘๐‘„ = ๐‘‘๐›น
Volume flux = change in stream function
058:0160
Jianming Yang
Chapter 2
41
Fall 2012
11.4.6 Generalization to Steady Plane Compressible Flow
In steady compressible flow, the continuity equation is
๐œ•๐œŒ๐‘ข
๐œ•๐‘ฅ
+
๐œ•๐œŒ๐‘ฃ
๐œ•๐‘ฆ
Define: ๐œŒ๐‘ข =
=0
๐œ•๐›น
๐œ•๐‘ฆ
๐œŒ๐‘ฃ = โˆ’
๐œ•๐›น
๐œ•๐‘ฅ
Streamline: ๐‘ข๐‘‘๐‘ฆ โˆ’ ๐‘ฃ๐‘‘๐‘ฅ = 0
Compare with
๐‘‘๐›น =
๐œ•๐›น
๐œ•๐‘ฅ
1 ๐œ•๐›น
๐œŒ ๐œ•๐‘ฆ
๐‘‘๐‘ฅ +
๐‘‘๐‘ฆ +
๐œ•๐›น
๐œ•๐‘ฆ
1 ๐œ•๐›น
๐œŒ ๐œ•๐‘ฅ
๐‘‘๐‘ฆ โ‡’
๐‘‘๐‘ฅ = 0
1
๐œŒ
(๐‘‘๐›น) = 0 ,
i.e., ๐‘‘๐›น = 0 and ๐›น = const. is a streamline.
Now: ๐‘‘๐‘šฬ‡ = ๐œŒ(๐• โˆ™ ๐ง)๐‘‘๐ด = ๐‘‘๐›น
๐ต
๐‘‘๐‘šฬ‡๐ด๐ต = โˆซ๐ด ๐œŒ(๐• โˆ™ ๐ง)๐‘‘๐ด = ๐›น๐ต โˆ’ ๐›น๐ด
Change in ๐›น is equivalent to the mass flux.