* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Course Content Form - Pima Community College
Survey
Document related concepts
Transcript
Course Content Form PIMA COMMUNITY COLLEGE Effective Term: Summer 2016 CHM 152 General Chemistry II Credit Hours: 4.00 Lecture Periods: 4.00 Lab Periods: 0.00 Description: Continuation of CHM 151. Includes emphasis on certain chemical concepts such as chemical kinetics, equilibrium, acids and bases, thermodynamics, and electrochemistry. Prerequisite(s): With a grade of C or better: MAT 151 or higher, and either CHM 151/151LB or 151IN. Corequisite(s): CHM 152LB. Information: IN is the integrated version of the course with the lecture and lab taught simultaneously. Student Learning Outcomes: Upon successful completion of the course, the student will be able to: 1. 2. 3. Define the rate of a reaction and the rate law, determine the components of the rate law, and describe the effects of concentration, temperature and catalysts on the rate of a reaction. Write and calculate equilibrium constants for a chemical reaction, calculate equilibrium concentrations from initial concentrations, apply Le Chatelier's principle to a chemical reaction and predict how changes in concentration, temperature, pressure, and volume influence the equilibrium system. Distinguish between Arrhenius and Bronsted acids and bases, identify conjugate acid/base pairs, predict the direction of a neutralization reaction, determine dissociation constants (Ka,Kb), pH and pOH in aqueous solutions, and relate molecular structure to acid strength. Performance Objectives: Upon successful completion of the course, the student will be able to: 1. 2. 3. 4. 5. 6. Define the rate of a reaction and the rate law, determine the components of the rate law, and describe the effects of concentration, temperature and catalysts on the rate of a reaction. Write and calculate equilibrium constants for a chemical reaction, calculate equilibrium concentrations from initial concentrations, apply Le Chatelier's principle to a chemical reaction and predict how changes in concentration, temperature, pressure, and volume influence the equilibrium system. Distinguish between Arrhenius and Bronsted acids and bases, identify conjugate acid/base pairs, predict the direction of a neutralization reaction, determine dissociation constants (Ka,Kb), pH and pOH in aqueous solutions, and relate molecular structure to acid strength. Define equilibria of acid/base buffer systems, describe buffer capacity, buffer range, common ion effect, and discuss acid/base titration curves. Define the first and second laws of thermodynamics, predict the change in entropy for a chemical reaction, define Gibbs free energy ^G, relate the sign of the free energy, enthalpy and entropy to the spontaneity of a chemical system, relating Gibbs free energy ^G and the equilibrium constant K. Balance redox equations, use redox potentials to determine the relative strength of oxidizing and reducing agents, describe the construction and functioning of voltaic and electrolytic cells, determine the cell potential, and discuss applications of electrochemical principles in batteries, corrosion, and electrolysis. Outline: I. Chemical Kinetics A. Reaction rate, the rate law and its components B. Concentration-time relationships, integrated rate laws C. Effects of temperature and catalysts on reaction rates D. Reaction mechanisms II. Chemical Equilibria A. Equilibrium constant, solubility product, and reaction quotient B. Le Chatelier's principle C. Precipitation reactions and the common ion effect III. The Chemistry of Acids and Bases A. Arrhenius and Bronsted concept of acids and bases B. Water and the pH scale C. Strong and weak acids and bases, acid/base dissociation constants D. Molecular structure and acidity E. Acid-base reactions F. Buffer solutions G. Acid/base titration curves IV. Thermodynamics A. Thermodynamic versus kinetic control of a chemical reaction B. First and second laws of thermodynamics C. Gibbs free energy V. Electrochemistry A. Redox reactions B. Electrochemical cells C. Electrolysis D. Corrosion E. Applications of electrochemical principles in industry VI. Optional topics: VII. Thermochemistry A. Enthalpy changes for chemical reactions B. Calorimetry C. Hess's Law and standard enthalpies of formation VIII. Solutions A. Solution concentrations B. Principles of solubility C. Colligative Properties IX. Nuclear Chemistry A. Binding energy B. Fission, fusion C. Radioactivity X. Organic Chemistry A. Introduction to nomenclature B. Functional groups C. Simple reaction types D. Polymers