* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Example 6.1 Rev 1N2
Basis (linear algebra) wikipedia , lookup
System of polynomial equations wikipedia , lookup
Cartesian tensor wikipedia , lookup
Jordan normal form wikipedia , lookup
History of algebra wikipedia , lookup
Linear algebra wikipedia , lookup
Cayley–Hamilton theorem wikipedia , lookup
Eigenvalues and eigenvectors wikipedia , lookup
Example 6.1 N2 > Enter the governing equation: > ge:=diff(u(x,y),y$2)=-epsilon^2*diff(u(x,y),x$2); Enter the boundary conditions: > bc1:=u(x,y)-0; > bc2:=u(x,y)-0; > bc3:=u(x,y)-0; > bc4:=u(x,y)-1; > epsilon:=1; Enter the finite difference approximations for the derivatives: > dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)); > dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)); > dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)); > d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)); Convert the boundary conditions to finite difference form: > bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),x=0,b c1); > bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),x =1,bc2); Enter the number of interior node points: > N:=2; > eq[0]:=bc1; > eq[N+1]:=bc2; Convert the governing equation to finite difference from (equation 6.1.12): > for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)= subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) = subs(m=i,dydx),u(x,y)=u[i](zeta),x=i*h,rhs(h^2/epsilon^2*ge));od ; Enter the boundary values: > u[0](zeta):=(solve(eq[0],u[0](zeta))); > u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta)); > for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)=u[N+1+i](zeta);od; > for i from 1 to N do eq[i]:=eval(eq[i]);od;for i from 1 to N do eq[N+1+i]:=eval(eq[N+1+i]);od; Generate the A matrix using the governing equations and the dependent variables. > eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]; > Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)]; > A:=genmatrix(eqns,Y,'b1'); Convert the entries of the A matrix as decimals if N is greater than two (as in chapter 5.1): > if N>2 then A:=map(evalf,A):end; A Maple procedure is written to expedite the calculation for the exponential matrix (see chapter 5.1). First the eigenvalues are found: > > Error, illegal use of an object as a name Note that this procedure can be used only if all the eigenvalues are real and distinct. Also, for obtaining the eigenvectors (equation 5.26) since s are coupled, all of the equations are solved simultaneously. (In chapter 5.1, the equations for s were solved individually one-by one. > evalm(A); > b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b); Note that for the example given the b vector is zero. However, depending on the boundary conditions, bc3 and bc3, the b vector can be a function of ζ or a constant vector. > h:=eval(1/(N+1)); > J:=jordan(A,S); > > > > mat:=evalm(S&*exponential(J,zeta)&*inverse(S)): mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))): b2:=evalm(subs(zeta=zeta1,evalm(b))): mat2:=evalm(mat1&*b2): > mat2:=map(expand,mat2): > mat3:=map(int,mat2,zeta1=0..zeta): The initial condition vector is defined here. > Y0:=matrix(2*N,1); > for i to N do Y0[i,1]:=p[i];od: > for i to N do Y0[N+i,1]:=c[i]:od: > evalm(Y0); The solution is found by adding the nonhomogeneous part to the homogeneous part. > Y:=evalm(mat&*Y0+mat3): The solution at y = 0 and y = 1 is stored in sol0 and sol1 to calculate the unknown constants. > sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))): > sol1:=map(eval,evalm(subs(zeta=epsilon/h,evalm(Y)))): Now the boundary conditions bc3 and bc4 are applied. > for i to N do Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i],x=i*h,bc3) ;od; > for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1],u(x,y)= sol1[i,1],bc4));od; The unknown constants are solved as: > csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i], i=1..N)}); > > > > > assign(csol); Y:=map(eval,Y): for i from 1 to N do u[i](zeta):=eval((Y[i,1]));od: for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od: for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon *y/h,u[i](zeta)));od; Hence, the semianalytical solution is obtained for temperature distribution. The plots obtained for N=10 node points is given below: > for i from 0 to N+1 do pl[i]:=line([0.3,0.98-abs(i-5.25)*0.14],[0.6,evalf(subs(y=0.6,u[ i](y)))],thickness=1,linestyle=dot); pt[i]:=textplot([0.3,0.98-abs(i-5.25)*0.14,typeset(u[i],"(y)")], align=left): end do: > pp:=plot([seq(u[i](y),i=0..N+1)],y=0..1); > display([pp,seq(pl[i],i=0..N+1),seq(pt[i],i=0..N+1)],axes =boxed,thickness=3,title="Figure Exp. 6.1.",labels=[y,"u"]); > M:=10; > T1:=[seq(evalf(i/M),i=0..M)]; > for j from 1 to M do P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N +1)],style=line,thickness=3,axes=boxed,view=[0..1,0..1.1]):od: > P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,1))],i=0..N+1)],style=li ne,thickness=3,title="Figure Exp. 6.2.",axes=boxed): > for j from 1 to M+1 do pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[5](y))),typeset(y,spri ntf("=%4.2f",T1[j]))],align=above); od: > display({seq(P[i],i=1..M+1),seq(pt[j],j=1..M+1)},labels=[x,u]); Error:TEXT location must be numeric; received: [.5, u[5](.1000000000)] > Ny:=30; > PP:=matrix(N+2,Ny); > for i to Ny do PP[1,i]:=0;PP[N+2,i]:=0;od: > for i to N+2 do PP[i,1]:=0;PP[i,Ny]:=1;od: > for i from 2 to N+1 do for j from 2 to Ny-1 do PP[i,j]:=evalf(subs(y=(j-1)/(Ny-1),u[i-1](y)));od;od: > plotdata := [seq([ seq([(i-1)/(N+1),(j-1)/(Ny-1),PP[i,j]], i=1..N+2)], j=1..Ny)]: > surfdata(plotdata,axes=boxed,title="Figure Exp. 6.3.",labels=[x,y,u],orientation=[-120,60] ); >