
connected spaces and how to use them
... We conclude by giving an application that uses a connected components count. Corollary 4. The block capitals X and T (considered as subsets of R2 ) are not homeomorphic. Proof. Idea: remove the center point in X. You get 4 connected components. Removing a point in T, you never get more than 3 compon ...
... We conclude by giving an application that uses a connected components count. Corollary 4. The block capitals X and T (considered as subsets of R2 ) are not homeomorphic. Proof. Idea: remove the center point in X. You get 4 connected components. Removing a point in T, you never get more than 3 compon ...
X - Prometeo 2013/058 Fase I
... Example 6. If X is a k-space, each compact set of Cc (X) need not be metrizable. Let X = D(ℵ1 ). Then X satisfies the first axiom of countability and hence is a k-space, but since Cc (X) = Cp (X) = Rω1 , the cube [0, 1]ω1 is a non-metrizable compact set of Cc (X). Observe that if d is the trivial metr ...
... Example 6. If X is a k-space, each compact set of Cc (X) need not be metrizable. Let X = D(ℵ1 ). Then X satisfies the first axiom of countability and hence is a k-space, but since Cc (X) = Cp (X) = Rω1 , the cube [0, 1]ω1 is a non-metrizable compact set of Cc (X). Observe that if d is the trivial metr ...