• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Geometry: Deductive Structure
Geometry: Deductive Structure

abstract
abstract

BOOK REVIEW
BOOK REVIEW

Robert McCann, U Toronto
Robert McCann, U Toronto

1300Y Geometry and Topology, Assignment 1 Exercise 1. Let Γ be a
1300Y Geometry and Topology, Assignment 1 Exercise 1. Let Γ be a

索书号:O187 /C877 (2) (MIT) Ideals, Varieties, and Algorithms C
索书号:O187 /C877 (2) (MIT) Ideals, Varieties, and Algorithms C

Euclidean/non-Euclidean Geometry
Euclidean/non-Euclidean Geometry

Welcome to Geometry - Greene Central School District
Welcome to Geometry - Greene Central School District

Applied Math Seminar The Geometry of Data  Spring 2015
Applied Math Seminar The Geometry of Data Spring 2015

< 1 ... 149 150 151 152 153

Geometrization conjecture

In mathematics, Thurston's geometrization conjecture states that certain three-dimensional topological spaces each have a unique geometric structure that can be associated with them. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply-connected Riemann surface can be given one of three geometries (Euclidean, spherical, or hyperbolic).In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William Thurston (1982), and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture. Thurston's hyperbolization theorem implies that Haken manifolds satisfy the geometrization conjecture. Thurston announced a proof in the 1980s and since then several complete proofs have appeared in print.Grigori Perelman sketched a proof of the full geometrization conjecture in 2003 using Ricci flow with surgery.There are now several different manuscripts (see below) with details of the proof. The Poincaré conjecture and the spherical space form conjecture are corollaries of the geometrization conjecture, although there are shorter proofs of the former that do not lead to the geometrization conjecture.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report