• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Document
Document

1) Classify the following Triangle by its sides Answer: CPCTC
1) Classify the following Triangle by its sides Answer: CPCTC

Slide 1
Slide 1

Name
Name

Common Core Geometry Volume I: Revised
Common Core Geometry Volume I: Revised

Postulates Theorems and Corollaries
Postulates Theorems and Corollaries

Q3 - FCCSC
Q3 - FCCSC

4-1 PPT Congruent Figures
4-1 PPT Congruent Figures

Given
Given

Geometry Performance Expectations by reporting Strand Reporting
Geometry Performance Expectations by reporting Strand Reporting

Geometry Performance Expectations by reporting Strand Reporting
Geometry Performance Expectations by reporting Strand Reporting

Geometry - McDougal Littell
Geometry - McDougal Littell

Triangles and Quadrilaterals
Triangles and Quadrilaterals

LSU College Readiness Program COURSE
LSU College Readiness Program COURSE

... LOUISIANA MATHEMATICS STANDARDS CORRELATIONS CHAPTER 1: The Beginning of Geometry 1.2 Geometry – A Mathematical System (18) Understand how a mathematical system, like geometry, is formed. G-CO.A.1 1.3 Points, Lines, and Planes (51) Learn the basic terms and postulates of geometry G-CO.A.1 1.4 Segmen ...
Overview - Connecticut Core Standards
Overview - Connecticut Core Standards

Document
Document

Geometry - 3P Learning
Geometry - 3P Learning

Name: Date: In the exercises below , use the diagram to the right
Name: Date: In the exercises below , use the diagram to the right

Geometric Relationship Sample Tasks with Solutions
Geometric Relationship Sample Tasks with Solutions

Outcomes for Exam 2
Outcomes for Exam 2

... After studying, place a check mark next to those outcomes you feel you understand and/or are proficient with. Place a question mark next to those outcomes which you feel your skills/understanding is questionable. Turn in with your test. To be successful on Exam 3 you should be able to … Prerequisite ...
Outcomes for Exam 2
Outcomes for Exam 2

Chapter 5: Relationships in Triangles
Chapter 5: Relationships in Triangles

File
File

All answers on this test must be in simplest form (denominators
All answers on this test must be in simplest form (denominators

... Geometry Team Question: 10 ...
Chapter 5 - West Jefferson Local Schools
Chapter 5 - West Jefferson Local Schools

< 1 ... 80 81 82 83 84 85 86 87 88 ... 612 >

Rational trigonometry

Rational trigonometry is a proposed reformulation of metrical planar and solid geometries (which includes trigonometry) by Canadian mathematician Norman J. Wildberger, currently an associate professor of mathematics at the University of New South Wales. His ideas are set out in his 2005 book Divine Proportions: Rational Trigonometry to Universal Geometry. According to New Scientist, part of his motivation for an alternative to traditional trigonometry was to avoid some problems that occur when infinite series are used in mathematics. Rational trigonometry avoids direct use of transcendental functions like sine and cosine by substituting their squared equivalents. Wildberger draws inspiration from mathematicians predating Georg Cantor's infinite set-theory, like Gauss and Euclid, who he claims were far more wary of using infinite sets than modern mathematicians. To date, rational trigonometry is largely unmentioned in mainstream mathematical literature.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report