• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
MATHEMATICS THROUGH PAPER FOLDING Introduction ALTON T. OLSON University of Alberta
MATHEMATICS THROUGH PAPER FOLDING Introduction ALTON T. OLSON University of Alberta

Using Congruence Theorems - IHS Math
Using Congruence Theorems - IHS Math

Angle and Circle Characterizations of Tangential Quadrilaterals
Angle and Circle Characterizations of Tangential Quadrilaterals

... A tangential quadrilateral is a convex quadrilateral with an incircle, i.e., a circle inside the quadrilateral that is tangent to all four sides. In [4] and [5] we reviewed and proved a total of 20 different necessary and sufficient conditions for a convex quadrilateral to be tangential. Of these th ...
Preface - Normalesup.org
Preface - Normalesup.org

Geometry – AP Book 7, Part 2: Unit 5
Geometry – AP Book 7, Part 2: Unit 5

Sample pages from Topic Tutor Higher StudentBook
Sample pages from Topic Tutor Higher StudentBook

4-1 companion notes
4-1 companion notes

CK-12 Geometry, 2nd Edition
CK-12 Geometry, 2nd Edition

... #18: By definition, a point does not take up any space, it is only a location. #21: The ray is never read “BA,” the endpoint is always stated first. To make #15 true, they must be three non-collinear points. For #16, the two rays must lie on the same line, which it does not state. For #20, four poin ...
a. Angles NMQ and MNP are consecutive angles. b. Angles MQP
a. Angles NMQ and MNP are consecutive angles. b. Angles MQP

Basic Geometric Constructions - Goodheart
Basic Geometric Constructions - Goodheart

PROOF Write the specified type of proof. 1. two
PROOF Write the specified type of proof. 1. two

Review Queue - (BMET) Library
Review Queue - (BMET) Library

Automatic construction of quality nonobtuse boundary and/or
Automatic construction of quality nonobtuse boundary and/or

Geometry EOC Practice Test #1
Geometry EOC Practice Test #1

Chapter 4.1
Chapter 4.1

1 Triangle Congruence
1 Triangle Congruence

Preview - Education Time Courseware Inc
Preview - Education Time Courseware Inc

Axiomatic Geometry: Euclid and Beyond
Axiomatic Geometry: Euclid and Beyond

Chapter 4
Chapter 4

... FI, WE; IN, EB; FN, WB ∠ F, ∠ W; ∠ I, ∠ E; ∠ N, ∠ B YES NO ∆CDO ∠C CO DO Yes because AO = OC and DO = OB ...
File
File

Angles In Triangles And Quadrilaterals Year 6
Angles In Triangles And Quadrilaterals Year 6

notes
notes

Proving that a Quadrilateral is a Parallelogram Any of the methods
Proving that a Quadrilateral is a Parallelogram Any of the methods

... Name Honors Geometry Given: CirCle H and CirCle "Prove: HELO is a parallelogram ...
JMAP REGENTS BY DATE
JMAP REGENTS BY DATE

Section 4.1 Radian and Degree Measure
Section 4.1 Radian and Degree Measure

< 1 ... 8 9 10 11 12 13 14 15 16 ... 612 >

Rational trigonometry

Rational trigonometry is a proposed reformulation of metrical planar and solid geometries (which includes trigonometry) by Canadian mathematician Norman J. Wildberger, currently an associate professor of mathematics at the University of New South Wales. His ideas are set out in his 2005 book Divine Proportions: Rational Trigonometry to Universal Geometry. According to New Scientist, part of his motivation for an alternative to traditional trigonometry was to avoid some problems that occur when infinite series are used in mathematics. Rational trigonometry avoids direct use of transcendental functions like sine and cosine by substituting their squared equivalents. Wildberger draws inspiration from mathematicians predating Georg Cantor's infinite set-theory, like Gauss and Euclid, who he claims were far more wary of using infinite sets than modern mathematicians. To date, rational trigonometry is largely unmentioned in mainstream mathematical literature.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report