• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
A continuum elastic–plastic model for woven-fabric/polymer
A continuum elastic–plastic model for woven-fabric/polymer

... Due to the large amount of anisotropy and heterogeneity of woven fabric composites on a mesoscopic scale and the tremendously varying modes of microdamage which depend on the applied stress state (either uniaxial or biaxial, tension or compression), the macroscopic non-linear behavior is strongly de ...
Title Goes Here
Title Goes Here

... Apparently, the process of coining is very simple: it is nothing but geometrical matching of die and workpiece by plastic deformation. Even at atomic scale precision it seems possible to complete the process. However, the following factors hinder even micrometer scale precision: surface damage, insu ...
Strain Gage - Transcell Technology
Strain Gage - Transcell Technology

... the increase of time, manifested as negative creep. Through integrated action of them, the result is that the load cell is manifested as positive or negative creep. The change in size of top of grid can adjust the value and positive or negative direction of the strain gauge’s creep, so such strain g ...
National Diploma in Engineering Mechanical Principles for
National Diploma in Engineering Mechanical Principles for

... expanded according to the law pV1.2 to a final volume of 100 litres determine (a) its initial volume, (b) its final pressure, (c) its final temperature. For air, take R = 287 Jkgˉ¹ Kˉ¹. (ii) Air with an initial volume of 0.1m³, pressure 1 bar and temperature 15°C is compressed according to the law p ...
Slides for lecture #23
Slides for lecture #23

... In fine grained (<10 µm) materials close to Tm very large strain rate sensitivity and strain to failure (up to 100-fold elongation) can be observed. This is called superplasticity. It depends on grain boundary sliding, rather than dislocation mechanisms. Nanocrystalline materials contain many grain ...
Stress and Strain
Stress and Strain

... angles, the tangent of the angle is approximately equal to the angle itself. Hence, the average shear strain is equal ...
Module
Module

... area of the specimen gives the so called true stress. Within the elastic limit, the material returns to its original dimension on removal of the load. The elastic modulus is referred to the slope of the stress-strain behavior in the elastic region and its SI unit is conceived as N.m-3. The elastic m ...
Solids and Fluids
Solids and Fluids

... Tensile/Compressive Stress and Strain • For sufficiently small tensile stress, stress and strain are proportional through Young’s modulus Y: Tensile stress F / A Fl Y ...
Stress Definition for a Layman
Stress Definition for a Layman

... Stress Definition for a Layman Stress is defined as the force over the area of an object. Force is related to the amount of pressure applied to an object (The American Heritage, 2006). The word stress comes from the shortening of the middle French word “destresse” to mean hardship, adversity, force, ...
final presentation_G.. - Stanford Exploration Project
final presentation_G.. - Stanford Exploration Project

... deformation caused by the action of a system of stresses on a body. • Strain is the change – in shape (distortion) and – in volume (dilation), – or a combination. ...
introduction to impact loading
introduction to impact loading

... damping ratio is less than 10% (ζ < 0.1) so they vibrate following a shock. On the other hand automobile suspensions (properly maintained) are highly damped so that striking a pothole does not produce oscillation and the critical damping ratio exceeds 1. Note F(t) also that k is formally the static ...
Transducers notes
Transducers notes

... Two wires of different material, usually twisted together. When heat (or cold) is applied to the wires a small voltage is produced at the contact point of the wires. The amount of voltage is dependent on the type of wire material, and can vary from under 10 Volts to slightly over 75 Volts per degr ...
Elastic response of cubic crystals to biaxial strain
Elastic response of cubic crystals to biaxial strain

... determined by minimizing the free energy F with respect to the directions with no external stress. The general analytic solutions for isotropic and for one-dimensional 共uniaxial兲 external deformations yield the well-known bulk modulus and Poisson ratio, respectively. The Poisson ratio of elastically ...
S. Wagner, I-C. Cheng, K. Long, A. Kattamis and J.C. Sturm "Managing mechanical stress in flexible active-matrix backplanes," Proc. Internat. Display Manufacturing Conference 2005, Taipei, Taiwan, Feb.21-24, 2005, pp. 415-418. Society for Information Display, Taipei Chapter, 1001 T-Hsueh Rd., Hsin Chu, Taiwan.
S. Wagner, I-C. Cheng, K. Long, A. Kattamis and J.C. Sturm "Managing mechanical stress in flexible active-matrix backplanes," Proc. Internat. Display Manufacturing Conference 2005, Taipei, Taiwan, Feb.21-24, 2005, pp. 415-418. Society for Information Display, Taipei Chapter, 1001 T-Hsueh Rd., Hsin Chu, Taiwan.

... flexible substrates are more deformable than rigid glass plates they break less easily. But being more deformable, they also are less dimensionally stable. TFT films on flexible substrates break and misalign more easily than on glass plates. The strain ε is the relative (∆L/L) extension (defined pos ...
Strength of materials
Strength of materials

... The amount δT which gives the total thermal deflection (deformation due to temperature changes) is given by: δT = α L (Tf - Ti) = α L ΔT where α is the coefficient of thermal expansion in m/m°C, L is the length in meter, and Ti and Tf are the initial and final temperatures, respectively in °C. ...
Numerical Simulation of Fracture in Viscoelastic Materials Based on
Numerical Simulation of Fracture in Viscoelastic Materials Based on

... on minimization of the overall energy via the Griffith criterion. Use of the presented framework enables to study fracture behaviour of elastomers at different deformation rates. The experimental evidence from previous studies favors that the fracture toughness of non-strain-crystallising elastomers ...
Mechanical Energy Domain
Mechanical Energy Domain

... –For metals the K factor is about 2 –For silicon K factor is much higher Crystal orientation ...
ON THE DEFINITION OF STRESS RATE1 = Dta"` (1) Since and
ON THE DEFINITION OF STRESS RATE1 = Dta"` (1) Since and

... dependent metric tensor in the invariants; the latter are stationary in the presence of stationary stress components only in the case of locally rigid body motion. This argument for rejection can be strengthened further by the (not unrelated) consideration that the establishment of the constitutive ...
10.2 Simple Harmonic Motion and the Reference Circle
10.2 Simple Harmonic Motion and the Reference Circle

... Example 6 A Body Mass Measurement Device The device consists of a spring-mounted chair in which the astronaut sits. The spring has a spring constant of 606 N/m and the mass of the chair is 12.0 kg. The measured period is 2.41 s. Find the mass of the ...
Exact moment of a gastrocnemius muscle strain captured on video
Exact moment of a gastrocnemius muscle strain captured on video

... had a past history of multiple left hamstring strains, bilateral shin anterior compartment syndrome (treated surgically), and left L5 pars stress fracture. He was playing in the third Test of the 2001 Ashes series at Trent Bridge, Nottingham. A week before the Test match, he had played an exhibition ...
Chapter 9
Chapter 9

... container, all portions of it must be in static equilibrium All points at the same depth must be at the same pressure ...
Engineering Mechanics
Engineering Mechanics

... mathematical equations describing the fundamental physical laws for both solids and fluids are alike, so the different characteristics of solids and fluids have to be expressed by constitutive equations. Obviously, the number of different constitutive equations is huge considering the large number o ...
Chapter 12 Equilibrium and Elasticity
Chapter 12 Equilibrium and Elasticity

... We say that an object is in equilibrium when the following two conditions are satisfied: 1. The linear momentum P of the center of mass is constant. 2. The angular momentum L about the center of mass or any other point is a constant. Our concern in this chapter is with situations in which P  0 and ...
Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture
Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture

... which we have developed in prior p a p e r s [11, 14]. B o t h formulations allow elastic deformation away from a reference shape represented within the model. In our inelastic generalizations, internal viscous a n d plastic processes dynamically feed p a r t of t h e i n s t a n t a n e o u s defor ...
CVE 503 ASSIGNMENT PREPARED BY SALAWU AKINYINKA 12
CVE 503 ASSIGNMENT PREPARED BY SALAWU AKINYINKA 12

... The basis of vibration analysis is predicting the structural response when the external load acting on it is varying with respect to time. The analysis of structural response is of considerable importance in the design of structures as: 1. Under certain situations, vibrations may cause large deforma ...
< 1 ... 4 5 6 7 8 9 10 11 12 >

Deformation (mechanics)



Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current configuration. A configuration is a set containing the positions of all particles of the body.A deformation may be caused by external loads, body forces (such as gravity or electromagnetic forces), or changes in temperature, moisture content, or chemical reactions, etc.Strain is a description of deformation in terms of relative displacement of particles in the body that excludes rigid-body motions. Different equivalent choices may be made for the expression of a strain field depending on whether it is defined with respect to the initial or the final configuration of the body and on whether the metric tensor or its dual is considered.In a continuous body, a deformation field results from a stress field induced by applied forces or is due to changes in the temperature field inside the body. The relation between stresses and induced strains is expressed by constitutive equations, e.g., Hooke's law for linear elastic materials. Deformations which are recovered after the stress field has been removed are called elastic deformations. In this case, the continuum completely recovers its original configuration. On the other hand, irreversible deformations remain even after stresses have been removed. One type of irreversible deformation is plastic deformation, which occurs in material bodies after stresses have attained a certain threshold value known as the elastic limit or yield stress, and are the result of slip, or dislocation mechanisms at the atomic level. Another type of irreversible deformation is viscous deformation, which is the irreversible part of viscoelastic deformation.In the case of elastic deformations, the response function linking strain to the deforming stress is the compliance tensor of the material.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report