01 - TBAISD Moodle
... _____ 8. What happens to the magnetic field if more loops per meter are added to a solenoid? a. The magnetic field becomes weaker. b. The magnetic field becomes stronger. c. The magnetic field turns on and off. d. There is no change in the magnetic field. _____ 9. A solenoid wrapped around a soft ir ...
... _____ 8. What happens to the magnetic field if more loops per meter are added to a solenoid? a. The magnetic field becomes weaker. b. The magnetic field becomes stronger. c. The magnetic field turns on and off. d. There is no change in the magnetic field. _____ 9. A solenoid wrapped around a soft ir ...
01 - Edublogs
... _____ 8. What happens to the magnetic field if more loops per meter are added to a solenoid? a. The magnetic field becomes weaker. b. The magnetic field becomes stronger. c. The magnetic field turns on and off. d. There is no change in the magnetic field. _____ 9. A solenoid wrapped around a soft ir ...
... _____ 8. What happens to the magnetic field if more loops per meter are added to a solenoid? a. The magnetic field becomes weaker. b. The magnetic field becomes stronger. c. The magnetic field turns on and off. d. There is no change in the magnetic field. _____ 9. A solenoid wrapped around a soft ir ...
What is Magnetism? Power Point Notes 1. Which two ancient
... 6. Where are magnets the strongest? 7. Draw a picture of a bar magnet showing the magnetic field lines: ...
... 6. Where are magnets the strongest? 7. Draw a picture of a bar magnet showing the magnetic field lines: ...
File
... Use the physical science drop down box. Go to “virtual labs, quests & computer work. Find this assignment “Weak & Strong Magnetic Fields”. You may click directly on the link below to open it. ...
... Use the physical science drop down box. Go to “virtual labs, quests & computer work. Find this assignment “Weak & Strong Magnetic Fields”. You may click directly on the link below to open it. ...
Electromagnet
An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. The magnetic field disappears when the current is turned off. Electromagnets usually consist of a large number of closely spaced turns of wire that create the magnetic field. The wire turns are often wound around a magnetic core made from a ferromagnetic or ferrimagnetic material such as iron; the magnetic core concentrates the magnetic flux and makes a more powerful magnet.The main advantage of an electromagnet over a permanent magnet is that the magnetic field can be quickly changed by controlling the amount of electric current in the winding. However, unlike a permanent magnet that needs no power, an electromagnet requires a continuous supply of current to maintain the magnetic field.Electromagnets are widely used as components of other electrical devices, such as motors, generators, relays, loudspeakers, hard disks, MRI machines, scientific instruments, and magnetic separation equipment. Electromagnets are also employed in industry for picking up and moving heavy iron objects such as scrap iron and steel.