MAX2871 - Maxim Part Number Search
... with integrated voltage control oscillators (VCOs) capable of operating in both integer-N and fractional-N modes. When combined with an external reference oscillator and loop filter, the MAX2871 is a high-performance frequency synthesizer capable of synthesizing frequencies from 23.5MHz to 6.0GHz wh ...
... with integrated voltage control oscillators (VCOs) capable of operating in both integer-N and fractional-N modes. When combined with an external reference oscillator and loop filter, the MAX2871 is a high-performance frequency synthesizer capable of synthesizing frequencies from 23.5MHz to 6.0GHz wh ...
TPS92691/-Q1 Multi-Topology LED Driver With
... analog dimming response with 15:1 range is obtained by varying the voltage from 140 mV to 2.25 V across the high impedance analog adjust (IADJ) input. PWM dimming of LED current is achieved by modulating the PWM input pin with the desired duty cycle and frequency. Optional DDRV gate driver output ca ...
... analog dimming response with 15:1 range is obtained by varying the voltage from 140 mV to 2.25 V across the high impedance analog adjust (IADJ) input. PWM dimming of LED current is achieved by modulating the PWM input pin with the desired duty cycle and frequency. Optional DDRV gate driver output ca ...
SP490E 数据资料DataSheet下载
... SP490ECN-L................................................................................... 0˚C to +70˚C................................................................................ 8-Pin NSOIC SP490ECN-L/TR............................................................................. 0˚C to +70 ...
... SP490ECN-L................................................................................... 0˚C to +70˚C................................................................................ 8-Pin NSOIC SP490ECN-L/TR............................................................................. 0˚C to +70 ...
Datasheet
... emitters, and photoconductive cells for industrial, commercial, and consumer electronics applications. PerkinElmer Optoelectronics has the distinction of being one of the foremost manufacturers in optoelectronics. Founded in 1947, PerkinElmer offers its customers over 35 years experience in the deve ...
... emitters, and photoconductive cells for industrial, commercial, and consumer electronics applications. PerkinElmer Optoelectronics has the distinction of being one of the foremost manufacturers in optoelectronics. Founded in 1947, PerkinElmer offers its customers over 35 years experience in the deve ...
AVTRON ACCel500 EXPANDER I/O AND ADAPTER I/O BOARDS
... 1-3.2 ANALOG INPUTS (mA/V) ANALOG inputs of I/O boards can be used as either current inputs or voltage inputs (see detailed description of each board). The signal type is selected with a jumper block on the board. In case the voltage type input is used you still have to define the voltage range with ...
... 1-3.2 ANALOG INPUTS (mA/V) ANALOG inputs of I/O boards can be used as either current inputs or voltage inputs (see detailed description of each board). The signal type is selected with a jumper block on the board. In case the voltage type input is used you still have to define the voltage range with ...
MC33730, Switch Mode Power Supply with Multiple Linear
... The 33730 is a multiple output power supply integrated circuit for automotive applications. The integrated circuit (IC) incorporates a switching regulator, which operates over a wide input voltage range from 4.5 to 26.5 V. The step-down switching regulator uses a fixed frequency pulsewidth modulatio ...
... The 33730 is a multiple output power supply integrated circuit for automotive applications. The integrated circuit (IC) incorporates a switching regulator, which operates over a wide input voltage range from 4.5 to 26.5 V. The step-down switching regulator uses a fixed frequency pulsewidth modulatio ...
ADG1236 数据手册DataSheet下载
... previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size. ...
... previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size. ...
16 channel LED driver with error detection, current gain control and
... The ALED1642GW is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The ALED1642GW guarantees 20 V output driving capability allowing the user to connect several LEDs in series. In the output stage, sixteen regulated current sources provide from 3 mA ...
... The ALED1642GW is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The ALED1642GW guarantees 20 V output driving capability allowing the user to connect several LEDs in series. In the output stage, sixteen regulated current sources provide from 3 mA ...
MAX17409 1-Phase Quick-PWM GPU Controller General Description Features
... Note 3: Limits are 100% production tested at TA = +25°C. Maximum and minimum limits over temperature are guaranteed by design and characterization. Note 4: The equation for the target voltage VTARGET is: VTARGET = the slew-rate-controlled version of VDAC, where VDAC = 0 for shutdown, VDAC = VVID oth ...
... Note 3: Limits are 100% production tested at TA = +25°C. Maximum and minimum limits over temperature are guaranteed by design and characterization. Note 4: The equation for the target voltage VTARGET is: VTARGET = the slew-rate-controlled version of VDAC, where VDAC = 0 for shutdown, VDAC = VVID oth ...
LM3648 Synchronous Boost LED Flash Driver
... Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absol ...
... Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absol ...
Analog-to-digital converter
An analog-to-digital converter (ADC, A/D, or A to D) is a device that converts a continuous physical quantity (usually voltage) to a digital number that represents the quantity's amplitude.The conversion involves quantization of the input, so it necessarily introduces a small amount of error. Furthermore, instead of continuously performing the conversion, an ADC does the conversion periodically, sampling the input. The result is a sequence of digital values that have been converted from a continuous-time and continuous-amplitude analog signal to a discrete-time and discrete-amplitude digital signal.An ADC is defined by its bandwidth (the range of frequencies it can measure) and its signal to noise ratio (how accurately it can measure a signal relative to the noise it introduces). The actual bandwidth of an ADC is characterized primarily by its sampling rate, and to a lesser extent by how it handles errors such as aliasing. The dynamic range of an ADC is influenced by many factors, including the resolution (the number of output levels it can quantize a signal to), linearity and accuracy (how well the quantization levels match the true analog signal) and jitter (small timing errors that introduce additional noise). The dynamic range of an ADC is often summarized in terms of its effective number of bits (ENOB), the number of bits of each measure it returns that are on average not noise. An ideal ADC has an ENOB equal to its resolution. ADCs are chosen to match the bandwidth and required signal to noise ratio of the signal to be quantized. If an ADC operates at a sampling rate greater than twice the bandwidth of the signal, then perfect reconstruction is possible given an ideal ADC and neglecting quantization error. The presence of quantization error limits the dynamic range of even an ideal ADC, however, if the dynamic range of the ADC exceeds that of the input signal, its effects may be neglected resulting in an essentially perfect digital representation of the input signal.An ADC may also provide an isolated measurement such as an electronic device that converts an input analog voltage or current to a digital number proportional to the magnitude of the voltage or current. However, some non-electronic or only partially electronic devices, such as rotary encoders, can also be considered ADCs. The digital output may use different coding schemes. Typically the digital output will be a two's complement binary number that is proportional to the input, but there are other possibilities. An encoder, for example, might output a Gray code.The inverse operation is performed by a digital-to-analog converter (DAC).