Download Microsoft Word - 14 Daftar Riwayat Hidup

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Power MOSFET wikipedia , lookup

CMOS wikipedia , lookup

Time-to-digital converter wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

UML state machine wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Integrating ADC wikipedia , lookup

Transistor–transistor logic wikipedia , lookup

Power electronics wikipedia , lookup

Voltage regulator wikipedia , lookup

Operational amplifier wikipedia , lookup

Surge protector wikipedia , lookup

Current mirror wikipedia , lookup

Schmitt trigger wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Opto-isolator wikipedia , lookup

Rectiverter wikipedia , lookup

Transcript
DAFTAR RIWAYAT HIDUP
Nama
: Ronny Mulyadi Halim
Tempat, tanggal lahir : Pontianak, 15 September 1981
Jenis kelamin
: Laki-laki
Alamat
: Jl. Studio No. 46, Kompleks TVRI
Kemanggisan Ilir III
Jakarta Barat 11480
No. telepon
: 0815-9153580
Riwayat pendidikan:
1. SD Gembala Baik, Pontianak
(1988 – 1994)
2. SMP Gembala Baik, Pontianak
(1994 – 1997)
3. SMU Gembala Baik, Pontianak
(1997 – 2000)
4. Universitas Bina Nusantara, S1 Sistem Komputer, Jakarta
(2000 – 2004)
Pengalaman kerja :
1. Web-static Programmer di “SeijitsuNet”
(Freelance 2003)
2. Penulis artikel majalah komputer di Computer Easy
(Freelance 2004)
169
DAFTAR RIWAYAT HIDUP
Nama
: Heri R
Tempat, tanggal lahir
: Muara Bungo, 10 September 1980
Jenis kelamin
: Laki-laki
Alamat
: Jl. Tambora I No. 19-AB
Jakarta Barat 11220
No. telepon
: 0815-9150015
Riwayat pendidikan :
1. SD Bhinneka Tunggal Ika, Jakarta
(1987 – 1993)
2. SMP Bhinneka Tunggal Ika, Jakarta
(1993 – 1996)
3. SMU Bhinneka Tunggal Ika, Jakarta
(1996 – 1999)
4. Universitas Bina Nusantara, S1 Teknik Informatika, Jakarta
(2000 – 2004)
Kursus :
™ Lembaga Bahasa LIA, program General English, tingkat Basic, Intermediate, dan
Advanced (Bersertifikat).
170
DAFTAR RIWAYAT HIDUP
Nama
: William Hasiholan
Tempat, tanggal lahir : Jakarta, 25 November 1974
Jenis kelamin
: Laki-laki.
Alamat
: Jl. Kusen Raya No.4, Kampung-Ambon
Jakarta 13210
No. telepon
: 0818-487286
Riwayat pendidikan:
1. SD DON BOSCO II, Jakarta
(1981 - 1987)
2. SMP DON BOSCO II, Jakarta
(1987 - 1990)
3. SMAN 21, Jakarta
(1990 - 1993)
4. STI&K, Jakarta
(1993 - 1998)
5. Universitas Bina Nusantara, S1 Teknik Informatika, Jakarta
(2000 - 2004)
Pengalaman kerja
:
(Januari 1997 – Februari 1999)
1. Programmer di NTC Consulting
2. Web Programmer di PT. Multi Media Promo
(Maret 1999 – Mei 2000)
(Oktober 2000 – Sekarang)
3. Programmer di PT. Plasma Soft
171
LAMPIRAN SOURCE CODE PROGRAM MIKROKONTROLER
$MOD51
$OBJECT
Org 00h
ajmp start
dataADC
equ P1
ADDRS equ P3.2
SOC
equ P3.3
EOC
equ P3.4
OE
equ P3.5
;======================= Makro Delay ============================
delay macro imm
mov A,#imm
acall del
endm
;====================== Awal Program ============================
ORG 30H
start:
;======================= Menkonversi input 0 =======================
acall adc0
;posisi full = 11111111b
;posisi min = 00000000b
;toleransi 5 bit LSB = 32 x 20 mv = 640 mV
Mov A, R2
ANL A, #0E0h ; Operasi logika hanya dapat menggunakan Acc (A)
Mov R2, A
cjne R2, #0E0h, kiri
kanan: mov R2,#00001000b
ajmp In1
kiri:
cjne R2, #00h, htengah
mov R2,#00000010b
ajmp In1
htenga h:mov R2,#00h
; data hasil konversi ada di R2
;======================== Menkonversi input 1 =======================
In1:
acall adc1
mov A,R3
ANL A, #0E0h ; Operasi logika hanya dapat menggunakan Acc (A)
Mov R3, A
cjne R3, #0E0h, bawah
atas:
mov R3,#00000001b
ajmp keypad
bawah: cjne R3, #00h, vtengah
mov R3,#00000100b
ajmp keypad
vtengah:mov R3,#00h
; Data hasil konversi ada di R3
;======================= Walking Zero pada KeyPad ===================
L1
L2
Keypad:
Kolom1:MOV
jnb
jnb
jnb
jnb
Kolom2:Mov
jnb
jnb
jnb
jnb
Kolom3: Mov
jnb
jnb
jnb
jnb
Mov
AJmp
Proces1:Mov
ajmp
Proces2:Mov
ajmp
Proces3:Mov
ajmp
Proces4:Mov
ajmp
Proces5:Mov
ajmp
Proces6:Mov
ajmp
Proces7:Mov
ajmp
Proces8:Mov
ajmp
Proces9:Mov
ajmp
Procbtg:Mov
ajmp
Proces0:Mov
ajmp
Procpgr:Mov
P0,#06Fh
P0.0, proces1
P0.1, proces4
P0.2, proces7
P0.3, procbtg
P0,#05Fh
P0.0, proces2
P0.1, proces5
P0.2, proces8
P0.3, proces0
P0,#03Fh
P0.0, proces3
P0.1, proces6
P0.2, proces9
P0.3, procpgr
R4,#00h
result
R4,#010h
result
R4,#020h
result
R4,#030h
result
R4,#040h
result
R4,#050h
result
R4,#060h
result
R4,#070h
result
R4,#080h
result
R4,#090h
result
R4,#0A0h
result
R4,#0B0h
result
R4,#0C0h
; ======================= hasil arah stick + keypad ====================
result:
mov A, R2
ORL A, R3
ORL A, R4
Mov R5,A
cjne A,070h,ceklagi
; jika tidak sama dengan RAM 70h, maka lompat ke cek lagi
ajmp start
ceklagi:cjne R5,#00h,Transm ; jika tidak sama dengan 00h maka lompat ke transm
Mov 070h,#00h
ajmp Start
Transm:Acall Serial
L3
ajmp Start
; ====================== prosedur delay ============================
del:
mov R0,A
del1:
mov R1,A
djnz R1,$
djnz R0,del1
ret
;=============== prosedur baca input adc 0 (stick horizontal) ===============
adc0:
clr
ADDRS
setb
SOC
clr
SOC
JNB
EOC,$
SETB OE
MOV R2, dataADC
;disimpan ke Register karena apabila kita menyimpan di A,
; nanti setelah keluar dari prosedur nilai A = 00h
DELAY 1
CLR
OE
ret
;=============== prosedur baca input adc 1 (stick vertical) ==============
adc1:
setb
ADDRS
setb
SOC
clr
SOC
JNB
EOC,$
SETB OE
MOV R3, dataADC
DELAY 1
CLR
OE
ret
;================ prosedur untuk komunikasi serial ======================
Serial:
MOV TMOD,#20H
;MODE 2(TIMER): 8 BIT AUTO RELOAD
MOV SCON,#50H
;MODE 1(8 BIT UART) WITH VARIABLE BAUDRATE
MOV TH1,#0E8H
;GENERATE 1200 BAUDRATE
MOV TL1,#0E8H
SETB TR1
; aktifkan timer
SETB EA
; gerbang interupt utama dibuka
SETB ES
; gerbang interrupt serial dibuka
MOV A,R5
KIRIM:
CLR ES
;Enable serial di clear
CLR TI
;flag transmit (done or not?)
MOV SBUF,A
;masukkan ke buffer yang akan dikirim
LANJUT:
JNB TI,LANJUT ;apakah sudah selesai (TI=satu?)
CLR TI
MOV A,R5
A,#0F0h
MOV 070h,A
RET
END
; isi register R5 disimpan di A ANL
; isi A di AND dengan 11110000b
; isi A disimpan ke alamat RAM 70h
LAMPIRAN SOURCE CODE PROGRAM APLIKASI
ALAT PRESENTASI
Dim VarData As Variant
Dim tombol1, tombol2, tombol3, tombol4, tombol5, tombol6, tombol7, tombol8, tombol9, tombol10,
tombol11, tombol12 As String
Private Sub Button(Status As String)
'*****************************************
' Untuk pengiriman konstanta fungsi mouse_event
'*****************************************
If Status = "Left Click" Then
mouse_event MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0
mouse_event MOUSEEVENTF_LEFTUP, 0, 0, 0, 0
ElseIf Status = "Mouse Left Down" Then
mouse_event MOUSEEVENTF_LEFTDOWN, 0, 0, 0, 0
ElseIf Status = "Mouse Left Up" Then
mouse_event MOUSEEVENTF_LEFTUP, 0, 0, 0, 0
ElseIf Status = "Right Click" Then
mouse_event MOUSEEVENTF_RIGHTDOWN, 0, 0, 0, 0
mouse_event MOUSEEVENTF_RIGHTUP, 0, 0, 0, 0
'*****************************************
' Untuk pengiriman konstanta fungsi keybd_event
'*****************************************
ElseIf Status = "Esc" Then
keybd_event VK_ESCAPE, 0, 0, 0
keybd_event VK_ESCAPE, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F1" Then
keybd_event VK_F1, 0, 0, 0
keybd_event VK_F1, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F2" Then
keybd_event VK_F2, 0, 0, 0
keybd_event VK_F2, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F3" Then
keybd_event VK_F3, 0, 0, 0
keybd_event VK_F3, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F4" Then
keybd_event VK_F4, 0, 0, 0
keybd_event VK_F4, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F5" Then
keybd_event VK_F5, 0, 0, 0
keybd_event VK_F5, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F6" Then
keybd_event VK_F6, 0, 0, 0
keybd_event VK_F6, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F7" Then
keybd_event VK_F7, 0, 0, 0
keybd_event VK_F7, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F8" Then
keybd_event VK_F8, 0, 0, 0
keybd_event VK_F8, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F9" Then
keybd_event VK_F9, 0, 0, 0
keybd_event VK_F9, 0, KEYEVENTF_KEYUP, 0
L4
L5
ElseIf Status = "F10" Then
keybd_event VK_F10, 0, 0, 0
keybd_event VK_F10, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F11" Then
keybd_event VK_F11, 0, 0, 0
keybd_event VK_F11, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F12" Then
keybd_event VK_F12, 0, 0, 0
keybd_event VK_F12, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Print Screen" Then
keybd_event VK_SNAPSHOT, 0, 0, 0
keybd_event VK_SNAPSHOT, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "ScrollLock" Then
keybd_event VK_SCROLL, 0, 0, 0
keybd_event VK_SCROLL, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Pause" Then
keybd_event VK_PAUSE, 0, 0, 0
keybd_event VK_PAUSE, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "1" Then
keybd_event VK_1, 0, 0, 0
keybd_event VK_1, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "2" Then
keybd_event VK_2, 0, 0, 0
keybd_event VK_2, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "3" Then
keybd_event VK_3, 0, 0, 0
keybd_event VK_3, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "4" Then
keybd_event VK_4, 0, 0, 0
keybd_event VK_4, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "5" Then
keybd_event VK_5, 0, 0, 0
keybd_event VK_5, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "6" Then
keybd_event VK_6, 0, 0, 0
keybd_event VK_6, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "7" Then
keybd_event VK_7, 0, 0, 0
keybd_event VK_7, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "8" Then
keybd_event VK_8, 0, 0, 0
keybd_event VK_8, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "9" Then
keybd_event VK_9, 0, 0, 0
keybd_event VK_9, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "0" Then
keybd_event VK_0, 0, 0, 0
keybd_event VK_0, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Backspace" Then
keybd_event VK_BACK, 0, 0, 0
keybd_event VK_BACK, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Insert" Then
keybd_event VK_INSERT, 0, 0, 0
keybd_event VK_INSERT, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Home" Then
keybd_event VK_HOME, 0, 0, 0
L6
keybd_event VK_HOME, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Page Up" Then
keybd_event VK_PRIOR, 0, 0, 0
keybd_event VK_PRIOR, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Tab" Then
keybd_event VK_TAB, 0, 0, 0
keybd_event VK_TAB, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Q" Then
keybd_event VK_Q, 0, 0, 0
keybd_event VK_Q, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "W" Then
keybd_event VK_W, 0, 0, 0
keybd_event VK_W, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "E" Then
keybd_event VK_E, 0, 0, 0
keybd_event VK_E, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "R" Then
keybd_event VK_R, 0, 0, 0
keybd_event VK_R, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "T" Then
keybd_event VK_T, 0, 0, 0
keybd_event VK_T, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Y" Then
keybd_event VK_Y, 0, 0, 0
keybd_event VK_Y, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "U" Then
keybd_event VK_U, 0, 0, 0
keybd_event VK_U, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "I" Then
keybd_event VK_I, 0, 0, 0
keybd_event VK_I, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "O" Then
keybd_event VK_O, 0, 0, 0
keybd_event VK_O, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "P" Then
keybd_event VK_P, 0, 0, 0
keybd_event VK_P, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Delete" Then
keybd_event VK_DELETE, 0, 0, 0
keybd_event VK_DELETE, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "End" Then
keybd_event VK_END, 0, 0, 0
keybd_event VK_END, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Page Down" Then
keybd_event VK_NEXT, 0, 0, 0
keybd_event VK_NEXT, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "CapsLock" Then
keybd_event VK_CAPITAL, 0, 0, 0
keybd_event VK_CAPITAL, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "A" Then
keybd_event VK_A, 0, 0, 0
keybd_event VK_A, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "S" Then
keybd_event VK_S, 0, 0, 0
keybd_event VK_S, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "D" Then
L7
keybd_event VK_D, 0, 0, 0
keybd_event VK_D, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "F" Then
keybd_event VK_F, 0, 0, 0
keybd_event VK_F, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "G" Then
keybd_event VK_G, 0, 0, 0
keybd_event VK_G, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "H" Then
keybd_event VK_H, 0, 0, 0
keybd_event VK_H, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "J" Then
keybd_event VK_J, 0, 0, 0
keybd_event VK_J, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "K" Then
keybd_event VK_K, 0, 0, 0
keybd_event VK_K, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "L" Then
keybd_event VK_L, 0, 0, 0
keybd_event VK_L, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Enter" Then
keybd_event VK_RETURN, 0, 0, 0
keybd_event VK_RETURN, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Z" Then
keybd_event VK_Z, 0, 0, 0
keybd_event VK_Z, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "X" Then
keybd_event VK_X, 0, 0, 0
keybd_event VK_X, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "C" Then
keybd_event VK_C, 0, 0, 0
keybd_event VK_C, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "V" Then
keybd_event VK_V, 0, 0, 0
keybd_event VK_V, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "B" Then
keybd_event VK_B, 0, 0, 0
keybd_event VK_B, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "N" Then
keybd_event VK_N, 0, 0, 0
keybd_event VK_N, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "M" Then
keybd_event VK_M, 0, 0, 0
keybd_event VK_M, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Spacebar" Then
keybd_event VK_SPACE, 0, 0, 0
keybd_event VK_SPACE, 0, KEYEVENTF_KEYUP, 0
'***********************************************
' Tombol khusus untuk kombinasi tombol pada keyboard
'***********************************************
ElseIf Status = "Shift Down" Then
keybd_event VK_SHIFT, 0, 0, 0
ElseIf Status = "Shift Up" Then
keybd_event VK_SHIFT, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Ctrl Down" Then
L8
keybd_event VK_CONTROL, 0, 0, 0
ElseIf Status = "Ctrl Up" Then
keybd_event VK_CONTROL, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Alt Down" Then
keybd_event VK_MENU, 0, 0, 0
ElseIf Status = "Alt Up" Then
keybd_event VK_MENU, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "WinButton Down" Then
keybd_event VK_LWIN, 0, 0, 0
ElseIf Status = "WinButton Up" Then
keybd_event VK_DIVIDE, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Up Button" Then
keybd_event VK_UP, 0, 0, 0
keybd_event VK_UP, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Down Button" Then
keybd_event VK_DOWN, 0, 0, 0
keybd_event VK_DOWN, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Left Button" Then
keybd_event VK_LEFT, 0, 0, 0
keybd_event VK_LEFT, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Right Button" Then
keybd_event VK_RIGHT, 0, 0, 0
keybd_event VK_RIGHT, 0, KEYEVENTF_KEYUP, 0
'***********************
' Bagian untuk numerik pad
'***********************
ElseIf Status = "NumLock" Then
keybd_event VK_NUMLOCK, 0, 0, 0
keybd_event VK_NUMLOCK, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "/" Then
keybd_event VK_DIVIDE, 0, 0, 0
keybd_event VK_DIVIDE, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "*" Then
keybd_event VK_MULTIPLY, 0, 0, 0
keybd_event VK_MULTIPLY, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "-" Then
keybd_event VK_SUBTRACT, 0, 0, 0
keybd_event VK_SUBTRACT, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "+" Then
keybd_event VK_ADD, 0, 0, 0
keybd_event VK_ADD, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "." Then
keybd_event VK_DECIMAL, 0, 0, 0
keybd_event VK_DECIMAL, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 0" Then
keybd_event VK_NUMPAD0, 0, 0, 0
keybd_event VK_NUMPAD0, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 1" Then
keybd_event VK_NUMPAD1, 0, 0, 0
keybd_event VK_NUMPAD1, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 2" Then
keybd_event VK_NUMPAD2, 0, 0, 0
keybd_event VK_NUMPAD2, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 3" Then
keybd_event VK_NUMPAD3, 0, 0, 0
L9
keybd_event VK_NUMPAD3, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 4" Then
keybd_event VK_NUMPAD4, 0, 0, 0
keybd_event VK_NUMPAD4, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 5" Then
keybd_event VK_NUMPAD5, 0, 0, 0
keybd_event VK_NUMPAD5, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 6" Then
keybd_event VK_NUMPAD6, 0, 0, 0
keybd_event VK_NUMPAD6, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 7" Then
keybd_event VK_NUMPAD7, 0, 0, 0
keybd_event VK_NUMPAD7, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 8" Then
keybd_event VK_NUMPAD8, 0, 0, 0
keybd_event VK_NUMPAD8, 0, KEYEVENTF_KEYUP, 0
ElseIf Status = "Numpad 9" Then
keybd_event VK_NUMPAD9, 0, 0, 0
keybd_event VK_NUMPAD9, 0, KEYEVENTF_KEYUP, 0
End If
End Sub
Private Sub Btn1_Click()
tombol1 = Combo1.Text
Button (tombol1)
End Sub
Private Sub Btn2_Click()
tombol2 = Combo2.Text
Button (tombol2)
End Sub
Private Sub Btn3_Click()
tombol3 = Combo3.Text
Button (tombol3)
End Sub
Private Sub Btn4_Click()
tombol4 = Combo4.Text
Button (tombol4)
End Sub
Private Sub Btn5_Click()
tombol5 = Combo5.Text
Button (tombol5)
End Sub
Private Sub Btn6_Click()
tombol6 = Combo6.Text
Button (tombol6)
End Sub
Private Sub Btn7_Click()
tombol7 = Combo7.Text
Button (tombol7)
End Sub
Private Sub Btn8_Click()
tombol8 = Combo8.Text
Button (tombol8)
End Sub
Private Sub Btn9_Click()
tombol9 = Combo9.Text
Button (tombol9)
L10
End Sub
Private Sub Btn10_Click()
tombol10 = Combo10.Text
Button (tombol10)
End Sub
Private Sub Btn11_Click()
tombol11 = Combo11.Text
Button (tombol11)
End Sub
Private Sub Btn12_Click()
tombol12 = Combo12.Text
Button (tombol12)
End Sub
'**************************
' Modul untuk tombol "Default"
'**************************
Private Sub BtnDefault_Click()
Combo1.Text = "Left Click"
Combo2.Text = "Mouse Left Down"
Combo3.Text = "Right Click"
Combo4.Text = "F5"
Combo5.Text = "Mouse Left Up"
Combo6.Text = "F6"
Combo7.Text = "Esc"
Combo8.Text = "Up Button"
Combo9.Text = "Enter"
Combo10.Text = "Left Button"
Combo11.Text = "Down Button"
Combo12.Text = "Right Button"
End Sub
'******************************
' Modul untuk tombol "Disconnect"
'******************************
Private Sub BtnDisconnect_Click()
BtnDisconnect.Enabled = False
btnConnect.Enabled = True
cPortSerial.Enabled = True
If MSComm1.PortOpen = True Then
MSComm1.PortOpen = False
ElseIf MSComm2.PortOpen = True Then
MSComm2.PortOpen = False
ElseIf MSComm3.PortOpen = True Then
MSComm3.PortOpen = False
ElseIf MSComm4.PortOpen = True Then
MSComm4.PortOpen = False
End If
End Sub
'******************************
' Modul untuk tombol "Tes Kinerja"
'******************************
Private Sub BtnKinerja_Click()
BtnKinerja.Enabled = False
Btn1.Enabled = True
L11
Btn2.Enabled = True
Btn3.Enabled = True
Btn4.Enabled = True
Btn5.Enabled = True
Btn6.Enabled = True
Btn7.Enabled = True
Btn8.Enabled = True
Btn9.Enabled = True
Btn10.Enabled = True
Btn11.Enabled = True
Btn12.Enabled = True
BtnKonektivitas.Enabled = True
End Sub
'**********************************
' Modul untuk tombol "Tes Konektivitas"
'**********************************
Private Sub BtnKonektivitas_Click()
If btnConnect.Enabled = True Then
MsgBox "Koneksi pada Port serial belum diaktifkan!"
Else
BtnKonektivitas.Enabled = False
Btn1.Enabled = False
Btn2.Enabled = False
Btn3.Enabled = False
Btn4.Enabled = False
Btn5.Enabled = False
Btn6.Enabled = False
Btn7.Enabled = False
Btn8.Enabled = False
Btn9.Enabled = False
Btn10.Enabled = False
Btn11.Enabled = False
Btn12.Enabled = False
BtnKinerja.Enabled = True
End If
End Sub
'***************************
' Modul untuk tombol "Connect"
'***************************
Private Sub btnConnect_Click()
BtnDisconnect.Enabled = True
btnConnect.Enabled = False
If cPortSerial.Text = "Port 1" And MSComm1.PortOpen = False Then
MSComm1.PortOpen = True
cPortSerial.Enabled = False
ElseIf cPortSerial.Text = "Port 2" And MSComm2.PortOpen = False Then
MSComm2.PortOpen = True
cPortSerial.Enabled = False
ElseIf cPortSerial.Text = "Port 3" And MSComm3.PortOpen = False Then
MSComm3.PortOpen = True
cPortSerial.Enabled = False
ElseIf cPortSerial.Text = "Port 4" And MSComm4.PortOpen = False Then
MSComm4.PortOpen = True
cPortSerial.Enabled = False
L12
Else: MsgBox "Port belum dipilih"
BtnDisconnect.Enabled = False
btnConnect.Enabled = True
End If
End Sub
'**************
' Modul Utama
'**************
Private Sub Form_Load()
BtnDisconnect.Enabled = False
Combo1.Text = "Left Click"
Combo2.Text = "Mouse Left Down"
Combo3.Text = "Right Click"
Combo4.Text = "F5"
Combo5.Text = "Mouse Left Up"
Combo6.Text = "F6"
Combo7.Text = "Esc"
Combo8.Text = "Up Button"
Combo9.Text = "Enter"
Combo10.Text = "Left Button"
Combo11.Text = "Down Button"
Combo12.Text = "Right Button"
End Sub
'**********************
' Modul untuk Tab pilihan
'**********************
Private Sub SSTab1_Click(PreviousTab As Integer)
BtnKinerja.Enabled = True
BtnKonektivitas.Enabled = True
Btn1.Enabled = False
Btn2.Enabled = False
Btn3.Enabled = False
Btn4.Enabled = False
Btn5.Enabled = False
Btn6.Enabled = False
Btn7.Enabled = False
Btn8.Enabled = False
Btn9.Enabled = False
Btn10.Enabled = False
Btn11.Enabled = False
Btn12.Enabled = False
End Sub
'**********************************
' Modul untuk pengaturan waktu (Timer)
'**********************************
Private Sub Timer1_Timer()
Dim point As Pointapi
Dim A As Long, B As Long
Dim Kode As String
If MSComm1.PortOpen = True Then
VarData = MSComm1.Input
ElseIf MSComm2.PortOpen = True Then
L13
VarData = MSComm2.Input
ElseIf MSComm3.PortOpen = True Then
VarData = MSComm3.Input
ElseIf MSComm4.PortOpen = True Then
VarData = MSComm4.Input
End If
If VarData <> "" Then
Kode = Asc(VarData) ' konversi ke ascii
VarData = CDec(Kode) ' konversi ke desimal
End If
GetCursorPos point
A = point.X
B = point.Y
If BtnKonektivitas.Enabled = True And BtnKinerja.Enabled = True Then
If VarData <> "" Then
DisplayKode.Caption = VarData
If VarData = 1 Then
B=B-2
DisplayFungsi.Caption = "Mouse ke Atas"
ElseIf VarData = 9 Then
B=B-2
A=A+2
DisplayFungsi.Caption = "Mouse ke Kanan Atas"
ElseIf VarData = 8 Then
A=A+2
DisplayFungsi.Caption = "Mouse ke Kanan"
ElseIf VarData = 12 Then
A=A+2
B=B+2
DisplayFungsi.Caption = "Mouse ke Kanan Bawah"
ElseIf VarData = 4 Then
B=B+2
DisplayFungsi.Caption = "Mouse ke Bawah"
ElseIf VarData = 6 Then
B=B+2
A=A-2
DisplayFungsi.Caption = "Mouse ke Kiri Bawah"
ElseIf VarData = 2 Then
A=A-2
DisplayFungsi.Caption = "Mouse ke Kiri"
ElseIf VarData = 3 Then
A=A-2
B=B-2
DisplayFungsi.Caption = "Mouse ke Kiri Atas"
ElseIf VarData = 16 Then
tombol1 = Combo1.Text Button
(tombol1) DisplayFungsi.Caption
= tombol1
ElseIf VarData = 32 Then
tombol2 = Combo2.Text Button
(tombol2) DisplayFungsi.Caption
= tombol2
ElseIf VarData = 48 Then
tombol3 = Combo3.Text
L14
Button (tombol3)
DisplayFungsi.Caption = tombol3
ElseIf VarData = 64 Then
tombol4 = Combo4.Text
Button (tombol4)
DisplayFungsi.Caption = tombol4
ElseIf VarData = 80 Then
tombol5 = Combo5.Text
Button (tombol5)
DisplayFungsi.Caption = tombol5
ElseIf VarData = 96 Then
tombol6 = Combo6.Text
Button (tombol6)
DisplayFungsi.Caption = tombol6
ElseIf VarData = 112 Then
tombol7 = Combo7.Text
Button (tombol7)
DisplayFungsi.Caption = tombol7
ElseIf VarData = 128 Then
tombol8 = Combo8.Text
Button (tombol8)
DisplayFungsi.Caption = tombol8
ElseIf VarData = 144 Then
tombol9 = Combo9.Text
Button (tombol9)
DisplayFungsi.Caption = tombol9
ElseIf VarData = 160 Then
tombol10 = Combo10.Text
Button (tombol10)
DisplayFungsi.Caption = tombol10
ElseIf VarData = 176 Then
tombol11 = Combo11.Text
Button (tombol11)
DisplayFungsi.Caption = tombol11
ElseIf VarData = 192 Then
tombol12 = Combo12.Text
Button (tombol12)
DisplayFungsi.Caption = tombol12
End If
SetCursorPos A, B
End If
End If
If BtnKonektivitas.Enabled = False And BtnKinerja.Enabled = True Then
If VarData <> "" Then
Btn1.BackColor = &H8000000F
Btn2.BackColor = &H8000000F
Btn3.BackColor = &H8000000F
Btn4.BackColor = &H8000000F
Btn5.BackColor = &H8000000F
Btn6.BackColor = &H8000000F
Btn7.BackColor = &H8000000F
Btn8.BackColor = &H8000000F
Btn9.BackColor = &H8000000F
Btn10.BackColor = &H8000000F
Btn11.BackColor = &H8000000F
L15
Btn12.BackColor = &H8000000F
If VarData = 16 Then
'Warna Hijau pada tombol saat Tes Konektivitas
Btn1.BackColor = 111111
ElseIf VarData = 32 Then
Btn2.BackColor = 111111
ElseIf VarData = 48 Then
Btn3.BackColor = 111111
ElseIf VarData = 64 Then
Btn4.BackColor = 111111
ElseIf VarData = 80 Then
Btn5.BackColor = 111111
ElseIf VarData = 96 Then
Btn6.BackColor = 111111
ElseIf VarData = 112 Then
Btn7.BackColor = 111111
ElseIf VarData = 128 Then
Btn8.BackColor = 111111
ElseIf VarData = 144 Then
Btn9.BackColor = 111111
ElseIf VarData = 160 Then
Btn10.BackColor = 111111
ElseIf VarData = 176 Then
Btn11.BackColor = 111111
ElseIf VarData = 192 Then
Btn12.BackColor = 111111
End If
End If End
If VarData =
""
End Sub
MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS
SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004
• Meets or Exceeds TIA/EIA-232-F and ITU
MAX232 . . . D, DW, N, OR NS PACKAGE
(TOP VIEW)
• Operates From a Single 5-V Power Supply
With 1.0-�-tF Charge-Pump Capacitors
•
•
•
•
•
C1+
VS+
C1−
C2+
C2−
VS−
T2OUT
R2IN
Operates Up To 120 kbit/s
Two Drivers and Two Receivers
30-V Input Levels
Low Supply Current . . . 8 mA Typical
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
1
2
16
3
4
14
5
12
6
11
10
15
13
7
8
9
VCC
GND
T1OUT
R1IN
R1OUT
T1IN
T2IN
R2OUT
• Upgrade With Improved ESD (15-kV HBM)
•
and 0.1-�-tF Charge-Pump Capacitors is
Available With the MAX202
Applications
− TIA/EIA-232-F, Battery-Powered Systems,
Terminals, Modems, and Computers
description/ordering information
The MAX232 is a dual driver/receiver that includes a capacitive voltage generator to supply TIA/EIA-232-F
voltage levels from a single 5-V supply. Each receiver converts TIA/EIA-232-F inputs to 5-V TTL/CMOS levels.
These receivers have a typical threshold of 1.3 V, a typical hysteresis of 0.5 V, and can accept 30-V inputs.
Each driver converts TTL/CMOS input levels into TIA/EIA-232-F levels. The driver, receiver, and
voltage-generator functions are available as cells in the Texas Instruments LinASIC library.
ORDERING INFORMATION
PDIP (N)
TOP-SIDE
MARKING
Tube of 25
MAX232N
Tube of 40
MAX232D
Reel of 2500
MAX232DR
Tube of 40
MAX232DW
Reel of 2000
MAX232DWR
SOP (NS)
Reel of 2000
MAX232NSR
MAX232
PDIP (N)
Tube of 25
MAX232IN
MAX232IN
Tube of 40
MAX232ID
Reel of 2500
MAX232IDR
Tube of 40
MAX232IDW
Reel of 2000
MAX232IDWR
SOIC (D)
0C to 70C
SOIC (DW)
−40C to 85C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SOIC (D)
SOIC (DW)
MAX232N
MAX232
MAX232
MAX232I
MAX232I
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
LinASIC is a trademark of Texas Instruments.
Copyright  2004, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
 DALLAS, TEXAS 75265
1
MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS
SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004
Function Tables
EACH DRIVER
INPUT
TIN
OUTPUT
TOUT
L
H
H
L
H = high level, L = low
level
EACH RECEIVER
INPUT
RIN
OUTPUT
ROUT
L
H
H
L
H = high level, L = low
level
logic diagram (positive logic)
11
14
T1IN
T1OUT
10
7
T2IN
T2OUT
12
13
R1OUT
R1IN
9
R2OUT
2
POST OFFICE BOX 655303
8
R2IN
 DALLAS, TEXAS 75265
MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS
SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Input supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V
Positive output supply voltage range, VS+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC − 0.3 V to 15 V
Negative output supply voltage range, VS− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to −15 V
Input voltage range, VI: Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V
Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 V
Output voltage range, VO: T1OUT, T2OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VS− − 0.3 V to VS+ + 0.3 V
R1OUT, R2OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V
Short-circuit duration: T1OUT, T2OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unlimited
Package thermal impedance, JA (see Notes 2 and 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . 57C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . 64C/W
Operating virtual junction temperature, T J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65C to 150C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages are with respect to network GND.
2. Maximum power dissipation is a function of TJ(max), JA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/JA. Operating at the absolute maximum TJ of 150C can affect reliability.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
VCC
Supply voltage
VIH
High-level input voltage (T1IN,T2IN)
VIL
Low-level input voltage (T1IN, T2IN)
R1IN, R2IN
Receiver input voltage
TA
MIN
NOM
MAX
4.5
5
5.5
2
Operating free-air temperature
UNIT
V
V
0.8
V
30
V
MAX232
0
70
MAX232I
−40
85
C
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Note 4 and Figure 4)
PARAMETER
ICC
TEST CONDITIONS
VCC = 5.5 V,
TA = 25C
Supply current
All outputs open,
MIN
TYP‡
MAX
8
10
UNIT
mA
‡ All typical values are at VCC = 5 V and TA = 25C.
NOTE 4: Test conditions are C1−C4 = 1 F at VCC = 5 V  0.5 V.
POST OFFICE BOX 655303
 DALLAS, TEXAS 75265
3
MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS
SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004
DRIVER SECTION
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature range (see Note 4)
PARAMETER
TEST CONDITIONS
VOH
High-level output voltage
T1OUT, T2OUT
VOL
Low-level output voltage‡
T1OUT, T2OUT
RL = 3 k to GND
ro
IOS§
Output resistance
T1OUT, T2OUT
VS+ = VS− = 0,
VO = 2 V
Short-circuit output current
T1OUT, T2OUT
VCC = 5.5 V,
VO = 0
RL = 3 k to GND
MIN
TYP†
5
7
−7
MAX
UNIT
V
−5
V

300
10
mA
IIS
Short-circuit input current
T1IN, T2IN
VI = 0
200
A
† All typical values are at V
CC = 5 V, TA = 25C.
‡ The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage
levels only.
§ Not more than one output should be shorted at a time.
NOTE 4: Test conditions are C1−C4 = 1 F at VCC = 5 V  0.5 V.
switching characteristics, VCC = 5 V, TA = 25C (see Note 4)
PARAMETER
TEST CONDITIONS
SR
Driver slew rate
RL = 3 k to 7 k,
See Figure 2
SR(t)
Driver transition region slew rate
See Figure 3
Data rate
One TOUT switching
MIN
TYP
MAX
UNIT
30
Vs
3
Vs
120
kbit/s
NOTE 4: Test conditions are C1−C4 = 1 F at VCC = 5 V  0.5 V.
RECEIVER SECTION
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature range (see Note 4)
PARAMETER
TEST CONDITIONS
VOH
High-level output voltage
R1OUT, R2OUT
IOH = −1 mA
VOL
Low-level output voltage‡
R1OUT, R2OUT
IOL = 3.2 mA
VIT+
Receiver positive-going input
threshold voltage
R1IN, R2IN
VCC = 5 V,
TA = 25C
VIT−
Receiver negative-going input
threshold voltage
R1IN, R2IN
VCC = 5 V,
TA = 25C
MIN
TYP†
MAX
3.5
V
1.7
0.8
UNIT
0.4
V
2.4
V
1.2
V
R1IN, R2IN
0.2
0.5
1
V
Input hysteresis voltage
VCC = 5 V
ri
Receiver input resistance
R1IN, R2IN
VCC = 5,
TA = 25C
3
5
7
k
† All typical values are at V
CC = 5 V, TA = 25C.
‡ The algebraic convention, in which the least-positive (most negative) value is designated minimum, is used in this data sheet for logic voltage
levels only.
NOTE 4: Test conditions are C1−C4 = 1 F at VCC = 5 V  0.5 V.
Vhys
switching characteristics, VCC = 5 V, TA = 25C (see Note 4 and Figure 1)
PARAMETER
TYP
UNIT
Receiver propagation delay time, low- to high-level output
500
ns
tPHL(R) Receiver propagation delay time, high- to low-level output
NOTE 4: Test conditions are C1−C4 = 1 F at VCC = 5 V  0.5 V.
500
ns
tPLH(R)
4
POST OFFICE BOX 655303
 DALLAS, TEXAS 75265
MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS
SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004
PARAMETER MEASUREMENT INFORMATION
VCC
Pulse
Generator
(see Note A)
RL = 1.3 k
R1OUT
or
R2OUT
R1IN
or
R2IN

See Note C
CL = 50 pF
(see Note B)
TEST CIRCUIT
10 ns
Input
10 ns
10%
90%
50%
90%
50%
3V
10%
0V
500 ns
tPLH
tPHL
VOH
Output
1.5 V
1.5 V
VOL
WAVEFORMS
NOTES: A. The pulse generator has the following characteristics: ZO = 50 , duty cycle  50%.
B. CL includes probe and jig capacitance.
C. All diodes are 1N3064 or equivalent.
Figure 1. Receiver Test Circuit and Waveforms for tPHL and tPLH Measurements
POST OFFICE BOX 655303
 DALLAS, TEXAS 75265
5
MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS
SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004
PARAMETER MEASUREMENT INFORMATION
T1IN or T2IN
Pulse
Generator
(see Note A)
T1OUT or T2OUT
EIA-232 Output
CL = 10 pF
(see Note B)
RL
TEST CIRCUIT
10 ns
10 ns
Input
10%
3V
90%
50%
90%
50%
10%
0V
5 s
tPLH
tPHL
90%
Output
VOH
90%
10%
10%
VOL
tTLH
tTHL
0.8 (V
SR =
–V )
0.8 (V
–V )
OH
OL
OL
OH
or
t TLH
t THL
WAVEFORMS
NOTES: A. The pulse generator has the following characteristics: ZO = 50 , duty cycle  50%.
B. CL includes probe and jig capacitance.
Figure 2. Driver Test Circuit and Waveforms for tPHL and tPLH Measurements (5-s Input)

Pulse
Generator
(see Note A)
EIA-232 Output
3 k
CL = 2.5 nF
TEST CIRCUIT
10 ns
10 ns
Input
90%
1.5 V
10%
90%
1.5 V
10%
20 s
tTLH
tTHL
Output
3V
3V
−3 V
−3 V
SR =
VOH
VOL
6V
or t
t
THL
TLH
WAVEFORMS
NOTE A:
The pulse generator has the following characteristics: ZO = 50 , duty cycle  50%.
Figure 3. Test Circuit and Waveforms for tTHL and tTLH Measurements (20-s Input)
6
POST OFFICE BOX 655303
 DALLAS, TEXAS 75265
MAX232, MAX232I
DUAL EIA-232 DRIVERS/RECEIVERS
SLLS047L − FEBRUARY 1989 − REVISED MARCH 2004
APPLICATION INFORMATION
5V
+
CBYPASS =1F
−
16
1
C1
C1+
1 F 3
From CMOS or TTL
To CMOS or TTL
8.5 V
1 F 5
6
VS−
C2+
1 F
2
VS+
C1−
4
C2
C3†
VCC
−8.5 V
C4
+
C2−
11
14
10
7
12
13
9
8
0V
1 F
EIA-232 Output
EIA-232 Output
EIA-232 Input
EIA-232 Input
15
GND
† C3 can be connected to VCC or GND.
NOTES: A. Resistor values shown are nominal.
B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be
connected as shown. In addition to the 1-F capacitors shown, the MAX202 can operate with 0.1-F capacitors.
Figure 4. Typical Operating Circuit
POST OFFICE BOX 655303
 DALLAS, TEXAS 75265
7
MECHANICAL DATA
N (R-PDIP- T**)
PLASllC DUAL-IN-LINE PACKAGE
16 PINS SHOWN
14
16
18
20
MAX
0.775
(19,69)
0.775
(19,69)
0.920
(23,37)
1.060
(26,92)
A MIN
0.745
(18,92)
0.745
(18,92)
0.850
(21,59)
0.940
(23,88)
MS-001
VARIAllON
AA
BB
AC
AD
M
A
f
0.260 (6,60)
0.240 (6,10)
l.
0.325 (8,26)
0.300 (7,62)
0.015 (0,38)
--0.010 (0,25) NOM
JL
_J
0.021 (0,53)
0.015 (0,38)
1-Eil-lo.mo (o,2sl®l
(
'
0.430 (10,92) MAX
1.-
'
\
I
I
1
\,
/
--
14/18 Pin Only
20 Pin vendor option
.£
4040049/E 12/2002
NOllES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
£ Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
.11 The 20 pin end lead shoulder width is a vendor option, either half or full width.
" '·NS1RUMENTS
TEXAS
www.tl.com
MECHANICALDATA
MSOI002B – JANUARY 1995 – REVISED SEPTEMBER 2001
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
8 PINS SHOWN
0.020 (0,51)
0.014 (0,35)
0.050 (1,27)
8
0.010 (0,25)
5
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
1

4
0.010 (0,25)
0– 8
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
0.069 (1,75) MAX
0.004 (0,10)
0.004 (0,10)
PINS **
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047/E 09/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
 DALLAS, TEXAS 75265
MECHANICAL DATA
DW (R-PDSO-G16)
PLASTIC SMALL-OUTLINE PACKAGE
9
l
0.419 (10,63)
0.393 (9,97)
0.299 (7,60)
0.291 (7,40)
1
;:;::;:;::;:
II B
Pin 1
Index Area
j.-
0.020 (0,51)
0.012 (0,31)
l-$-10.010 (0,25)®1
rmmmmt_._
L
Lo.o12 (o,3o)
0.004 (0,10)
0.104 (2,65) Max
0.013 (0,33)
O.OOB (0,20)
0.010 (0,25)
--*
0.050 (1,27)
0.016 (D.40)
4040000-2/F 06/2004
NOlES:
A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
D. Falls within JEDEC MS-013 variation AA.
..
ThxAs
INSIRUMENfS
www.ti.com
MECHANICAL DATA
NS (R-PDSO-G**)
PLASTlC SMALL-OUTLINE PACKAGE
14-PINS SHOWN
11s
l•lo 2s®l
0,15 NOM
5,60
5,00
'------r-0,-----,--,---,---,--,---,--,--,----,--,----J
8,20
7,40
_j
7
A
llllllilliJJ
0,15
0,05
Seating Plane
f
eMAX
M
14
16
20
24
A
MAX
10,50
10,50
12,90
15,30
A
MIN
9,90
9,90
12,30
14,70
4040062/C 03/03
NOTES:
A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Amplifiers
Applications
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2004, Texas Instruments Incorporated
ADC0808/ADC0809
8-Bit µP Compatible A/D Converters with 8-Channel
Multiplexer
General Description
Features
The ADC0808, ADC0809 data acquisition component is a
monolithic CMOS device with an 8-bit analog-to-digital converter, 8-channel multiplexer and microprocessor compatible
control logic. The 8-bit A/D converter uses successive approximation as the conversion technique. The converter features a high impedance chopper stabilized comparator, a
256R voltage divider with analog switch tree and a successive approximation register. The 8-channel multiplexer can
directly access any of 8-single-ended analog signals.
n Easy interface to all microprocessors
n Operates ratiometrically or with 5 VDC or analog span
adjusted voltage reference
n No zero or full-scale adjust required
n 8-channel multiplexer with address logic
n 0V to 5V input range with single 5V power supply
n Outputs meet TTL voltage level specifications
n ADC0808 equivalent to MM74C949
n ADC0809 equivalent to MM74C949-1
The device eliminates the need for external zero and
full-scale adjustments. Easy interfacing to microprocessors
is provided by the latched and decoded multiplexer address
inputs and latched TTL TRI-STATE outputs.
The design of the ADC0808, ADC0809 has been optimized
by incorporating the most desirable aspects of several A/D
conversion techniques. The ADC0808, ADC0809 offers high
speed, high accuracy, minimal temperature dependence,
excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device
ideally suited to applications from process and machine
control to consumer and automotive applications. For
16-channel multiplexer with common output (sample/hold
port) see ADC0816 data sheet. (See AN-247 for more information.)
Key Specifications
n
n
n
n
n
Resolution
Total Unadjusted Error
Single Supply
Low Power
Conversion Time
8 Bits
±1⁄2 LSB and ±1 LSB
5 VDC
15 mW
100 µs
Block Diagram
00567201
See Ordering
Information
© 2002 National Semiconductor Corporation
DS005672
www.national.com
ADC0808/ADC0809 8-Bit µP Compatible A/D Converters with 8-Channel Multiplexer
October 2002
ADC0808/ADC0809
Connection Diagrams
Dual-In-Line Package
Molded Chip Carrier Package
00567212
00567211
Order Number ADC0808CCV or ADC0809CCV
See NS Package V28A
Order Number ADC0808CCN or ADC0809CCN
See NS Package J28A or N28A
Ordering Information
−40˚C to +85˚C
TEMPERATURE RANGE
Error
± 1⁄2 LSB Unadjusted
± 1 LSB Unadjusted
Package Outline
www.national.com
ADC0808CCN
ADC0808CCV
ADC0809CCN
ADC0809CCV
N28A Molded DIP
V28A Molded Chip Carrier
2
(Notes 2,
Dual-In-Line Package (plastic)
1)
260˚C
Molded Chip Carrier Package
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales Office/
Distributors for availability and specifications.
Supply Voltage (VCC) (Note 3)
Vapor Phase (60 seconds)
215˚C
Infrared (15 seconds)
220˚C
ESD Susceptibility (Note 8)
400V
6.5V
−0.3V to
Voltage at Any Pin
Operating Conditions
(VCC+0.3V)
TMIN≤TA≤TMAX
Temperature Range (Note 1)
Except Control Inputs
−0.3V to +15V
Voltage at Control Inputs
ADC0808CCN,ADC0809CCN
ADC0808CCV, ADC0809CCV
(START, OE, CLOCK, ALE, ADD A, ADD B, ADD C)
−65˚C to +150˚C
Storage Temperature Range
Package Dissipation at TA =25˚C
(Notes 1, 2)
Range of VCC (Note 1)
−40˚C≤TA≤+85˚C
−40˚C≤TA≤+85˚C
4.5 VDC to 6.0 VDC
875 mW
Lead Temp. (Soldering, 10 seconds)
Electrical Characteristics
Converter Specifications: VCC =5 VDC =VREF+, VREF(−) =GND, TMIN≤TA≤TMAX and fCLK =640 kHz unless otherwise stated.
Symbol
Parameter
Conditions
Min
Typ
Max
Units
± 1 ⁄2
± 3 ⁄4
LSB
±1
± 11⁄4
LSB
VCC+0.10
VDC
VCC
VCC+0.1
V
VCC/2
VCC/2+0.1
V
2
µA
ADC0808
Total Unadjusted Error
25˚C
(Note 5)
TMIN to TMAX
LSB
ADC0809
VREF(+)
Total Unadjusted Error
0˚C to 70˚C
(Note 5)
TMIN to TMAX
Input Resistance
From Ref(+) to Ref(−)
1.0
Analog Input Voltage Range
(Note 4) V(+) or V(−)
GND−0.10
Voltage, Top of Ladder
Measured at Ref(+)
Voltage, Center of Ladder
VCC/2-0.1
VREF(−)
Voltage, Bottom of Ladder
Measured at Ref(−)
IIN
Comparator Input Current
fc =640 kHz, (Note 6)
LSB
2.5
−0.1
0
−2
± 0.5
kΩ
V
Electrical Characteristics
Digital Levels and DC Specifications: ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, 4.75≤VCC≤5.25V,
−40˚C≤TA≤+85˚C unless otherwise noted
Symbol
Parameter
Conditions
Min
Typ
Max
Units
10
200
nA
1.0
µA
ANALOG MULTIPLEXER
IOFF(+)
OFF Channel Leakage Current
VCC =5V, VIN =5V,
TA =25˚C
TMIN to TMAX
IOFF(−)
OFF Channel Leakage Current
VCC =5V, VIN =0,
TA =25˚C
−200
TMIN to TMAX
−1.0
−10
nA
µA
CONTROL INPUTS
VIN(1)
Logical “1” Input Voltage
VIN(0)
Logical “0” Input Voltage
IIN(1)
Logical “1” Input Current
VCC−1.5
V
VIN =15V
1.5
V
1.0
µA
(The Control Inputs)
IIN(0)
Logical “0” Input Current
−1.0
VIN =0
µA
(The Control Inputs)
ICC
Supply Current
fCLK =640 kHz
3
0.3
3.0
mA
www.national.com
ADC0808/ADC0809
Absolute Maximum Ratings
ADC0808/ADC0809
Electrical Characteristics
(Continued)
Digital Levels and DC Specifications: ADC0808CCN, ADC0808CCV, ADC0809CCN and ADC0809CCV, 4.75≤VCC≤5.25V,
−40˚C≤TA≤+85˚C unless otherwise noted
Symbol
Parameter
Conditions
Min
Typ
Max
Units
DATA OUTPUTS AND EOC (INTERRUPT)
VOUT(1)
Logical “1” Output Voltage
VCC = 4.75V
IOUT = −360µA
IOUT = −10µA
2.4
4.5
V(min)
V(min)
VOUT(0)
Logical “0” Output Voltage
IO =1.6 mA
0.45
VOUT(0)
Logical “0” Output Voltage EOC
IO =1.2 mA
0.45
V
IOUT
TRI-STATE Output Current
3
µA
VO =5V
−3
VO =0
V
µA
Electrical Characteristics
Timing Specifications VCC =VREF(+) =5V, VREF(−) =GND, tr =tf =20 ns and TA =25˚C unless otherwise noted.
Typ
Max
Units
tWS
Symbol
Minimum Start Pulse Width
Parameter
(Figure 5)
Conditions
MIn
100
200
ns
tWALE
Minimum ALE Pulse Width
(Figure 5)
100
200
ns
ts
Minimum Address Set-Up Time
(Figure 5)
25
50
ns
tH
Minimum Address Hold Time
(Figure 5)
25
50
ns
tD
Analog MUX Delay Time
RS =0Ω (Figure 5)
1
2.5
µs
From ALE
tH1, tH0
OE Control to Q Logic State
CL =50 pF, RL =10k (Figure 8)
125
250
ns
t1H, t0H
OE Control to Hi-Z
CL =10 pF, RL =10k (Figure 8)
125
250
ns
tc
Conversion Time
fc =640 kHz, (Figure 5) (Note 7)
90
100
116
µs
fc
Clock Frequency
10
640
tEOC
EOC Delay Time
(Figure 5)
CIN
Input Capacitance
At Control Inputs
10
15
pF
COUT
TRI-STATE Output
At TRI-STATE Outputs
10
15
pF
0
1280
kHz
8+2 µS
Clock
Periods
Capacitance
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating
the device beyond its specified operating conditions.
Note 2: All voltages are measured with respect to GND, unless othewise specified.
Note 3: A zener diode exists, internally, from VCC to GND and has a typical breakdown voltage of 7 VDC.
Note 4: Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages one diode drop below ground or one diode drop
greater than the VCCn supply. The spec allows 100 mV forward bias of either diode. This means that as long as the analog VIN does not exceed the supply voltage
by more than 100 mV, the output code will be correct. To achieve an absolute 0VDC to 5VDC input voltage range will therefore require a minimum supply voltage of
4.900 VDC over temperature variations, initial tolerance and loading.
Note 5: Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors. See Figure 3. None of these A/Ds requires a zero or full-scale adjust.
However, if an all zero code is desired for an analog input other than 0.0V, or if a narrow full-scale span exists (for example: 0.5V to 4.5V full-scale) the reference
voltages can be adjusted to achieve this. See Figure 13.
Note 6: Comparator input current is a bias current into or out of the chopper stabilized comparator. The bias current varies directly with clock frequency and has
little temperature dependence (Figure 6). See paragraph 4.0.
Note 7: The outputs of the data register are updated one clock cycle before the rising edge of EOC.
Note 8: Human body model, 100 pF discharged through a 1.5 kΩ resistor.
www.national.com
4
Multiplexer. The device contains an 8-channel single-ended
analog signal multiplexer. A particular input channel is selected by using the address decoder. Table 1 shows the input
states for the address lines to select any channel. The
address is latched into the decoder on the low-to-high transition of the address latch enable signal.
The successive approximation register (SAR) performs 8
iterations to approximate the input voltage. For any SAR
type converter, n-iterations are required for an n-bit converter. Figure 2 shows a typical example of a 3-bit converter.
In the ADC0808, ADC0809, the approximation technique is
extended to 8 bits using the 256R network.
TABLE 1.
SELECTED
ADDRESS LINE
ANALOG CHANNEL
C
B
A
IN0
L
L
L
IN1
L
L
H
IN2
L
H
L
IN3
L
H
H
IN4
H
L
L
IN5
H
L
H
IN6
H
H
L
IN7
H
H
H
The A/D converter’s successive approximation register
(SAR) is reset on the positive edge of the start conversion
start pulse. The conversion is begun on the falling edge of
the start conversion pulse. A conversion in process will be
interrupted by receipt of a new start conversion pulse. Continuous conversion may be accomplished by tying the
end-of-conversion (EOC) output to the SC input. If used in
this mode, an external start conversion pulse should be
applied after power up. End-of-conversion will go low between 0 and 8 clock pulses after the rising edge of start
conversion.
CONVERTER CHARACTERISTICS
The most important section of the A/D converter is the
comparator. It is this section which is responsible for the
ultimate accuracy of the entire converter. It is also the comparator drift which has the greatest influence on the repeatability of the device. A chopper-stabilized comparator provides the most effective method of satisfying all the
converter requirements.
The Converter
The heart of this single chip data acquisition system is its
8-bit analog-to-digital converter. The converter is designed to
give fast, accurate, and repeatable conversions over a wide
range of temperatures. The converter is partitioned into 3
major sections: the 256R ladder network, the successive
approximation register, and the comparator. The converter’s
digital outputs are positive true.
The chopper-stabilized comparator converts the DC input
signal into an AC signal. This signal is then fed through a
high gain AC amplifier and has the DC level restored. This
technique limits the drift component of the amplifier since the
drift is a DC component which is not passed by the AC
amplifier. This makes the entire A/D converter extremely
insensitive to temperature, long term drift and input offset
errors.
The 256R ladder network approach (Figure 1) was chosen
over the conventional R/2R ladder because of its inherent
monotonicity, which guarantees no missing digital codes.
Monotonicity is particularly important in closed loop feedback
control systems. A non-monotonic relationship can cause
oscillations that will be catastrophic for the system. Additionally, the 256R network does not cause load variations on the
reference voltage.
Figure 4 shows a typical error curve for the ADC0808 as
measured using the procedures outlined in AN-179.
5
www.national.com
ADC0808/ADC0809
The bottom resistor and the top resistor of the ladder network in Figure 1 are not the same value as the remainder of
the network. The difference in these resistors causes the
output characteristic to be symmetrical with the zero and
full-scale points of the transfer curve. The first output transition occurs when the analog signal has reached +1⁄2 LSB
and succeeding output transitions occur every 1 LSB later up
to full-scale.
Functional Description
ADC0808/ADC0809
Functional Description
(Continued)
00567202
FIGURE 1. Resistor Ladder and Switch Tree
00567213
00567214
FIGURE 2. 3-Bit A/D Transfer Curve
FIGURE 3. 3-Bit A/D Absolute Accuracy Curve
00567215
FIGURE 4. Typical Error Curve
www.national.com
6
ADC0808/ADC0809
Timing Diagram
00567204
FIGURE 5.
7
www.national.com
ADC0808/ADC0809
Typical Performance Characteristics
00567216
FIGURE 6. Comparator IIN vs VIN
(VCC =VREF =5V)
00567217
FIGURE 7. Multiplexer RON vs VIN
(VCC =VREF =5V)
www.national.com
8
ADC0808/ADC0809
TRI-STATE Test Circuits and
Timing Diagrams
t0H, tH0
t1H, tH1
00567218
00567221
t1H, CL = 10 pF
t0H, CL = 10 pF
00567222
00567219
tH0, CL = 50 pF
tH1, CL = 50 pF
00567223
00567220
FIGURE 8.
Applications Information
DMIN =Minimum data limit
A good example of a ratiometric transducer is a potentiometer used as a position sensor. The position of the wiper is
directly proportional to the output voltage which is a ratio of
the full-scale voltage across it. Since the data is represented
as a proportion of full-scale, reference requirements are
greatly reduced, eliminating a large source of error and cost
for many applications. A major advantage of the ADC0808,
ADC0809 is that the input voltage range is equal to the
supply range so the transducers can be connected directly
across the supply and their outputs connected directly into
the multiplexer inputs, (Figure 9).
OPERATION
1.0 RATIOMETRIC CONVERSION
The ADC0808, ADC0809 is designed as a complete Data
Acquisition System (DAS) for ratiometric conversion systems. In ratiometric systems, the physical variable being
measured is expressed as a percentage of full-scale which is
not necessarily related to an absolute standard. The voltage
input to the ADC0808 is expressed by the equation
Ratiometric transducers such as potentiometers, strain
gauges, thermistor bridges, pressure transducers, etc., are
suitable for measuring proportional relationships; however,
many types of measurements must be referred to an absolute standard such as voltage or current. This means a
system reference must be used which relates the full-scale
voltage
to
the
standard
volt.
For
example,
if
VCC =VREF =5.12V, then the full-scale range is divided into
256 standard steps. The smallest standard step is 1 LSB
which is then 20 mV.
(1)
VIN =Input voltage into the ADC0808
Vfs =Full-scale voltage
VZ =Zero voltage
DX =Data point being measured
DMAX =Maximum data limit
9
www.national.com
ADC0808/ADC0809
Applications Information
not be more negative than ground. The center of the ladder
voltage must also be near the center of the supply because
the analog switch tree changes from N-channel switches to
P-channel switches. These limitations are automatically satisfied in ratiometric systems and can be easily met in ground
referenced systems.
(Continued)
2.0 RESISTOR LADDER LIMITATIONS
The voltages from the resistor ladder are compared to the
selected into 8 times in a conversion. These voltages are
coupled to the comparator via an analog switch tree which is
referenced to the supply. The voltages at the top, center and
bottom of the ladder must be controlled to maintain proper
operation.
Figure 10 shows a ground referenced system with a separate supply and reference. In this system, the supply must be
trimmed to match the reference voltage. For instance, if a
5.12V is used, the supply should be adjusted to the same
voltage within 0.1V.
The top of the ladder, Ref(+), should not be more positive
than the supply, and the bottom of the ladder, Ref(−), should
00567207
FIGURE 9. Ratiometric Conversion System
The ADC0808 needs less than a milliamp of supply current
so developing the supply from the reference is readily accomplished. In Figure 11 a ground referenced system is
shown which generates the supply from the reference. The
buffer shown can be an op amp of sufficient drive to supply
the milliamp of supply current and the desired bus drive, or if
a capacitive bus is driven by the outputs a large capacitor will
supply the transient supply current as seen in Figure 12. The
LM301 is overcompensated to insure stability when loaded
by the 10 µF output capacitor.
www.national.com
The top and bottom ladder voltages cannot exceed VCC and
ground, respectively, but they can be symmetrically less than
VCC and greater than ground. The center of the ladder
voltage should always be near the center of the supply. The
sensitivity of the converter can be increased, (i.e., size of the
LSB steps decreased) by using a symmetrical reference
system. In Figure 13, a 2.5V reference is symmetrically
centered about VCC/2 since the same current flows in identical resistors. This system with a 2.5V reference allows the
LSB bit to be half the size of a 5V reference system.
10
ADC0808/ADC0809
Applications Information
(Continued)
00567224
FIGURE 10. Ground Referenced
Conversion System Using Trimmed Supply
00567225
FIGURE 11. Ground Referenced Conversion System with
Reference Generating VCC Supply
11
www.national.com
ADC0808/ADC0809
Applications Information
(Continued)
00567226
FIGURE 12. Typical Reference and Supply Circuit
00567227
RA =RB
*Ratiometric transducers
FIGURE 13. Symmetrically Centered Reference
3.0 CONVERTER EQUATIONS
The output code N for an arbitrary input are the integers
within the range:
The transition between adjacent codes N and N+1 is given
by:
(4)
Where: VIN =Voltage at comparator input
(2)
VREF(+) =Voltage at Ref(+)
The center of an output code N is given by:
VREF(−) =Voltage at Ref(−)
VTUE =Total unadjusted error voltage (typically
VREF(+)÷512)
(3)
www.national.com
12
If no filter capacitors are used at the analog inputs and the
signal source impedances are low, the comparator input
current should not introduce converter errors, as the transient created by the capacitance discharge will die out before the comparator output is strobed.
(Continued)
4.0 ANALOG COMPARATOR INPUTS
The dynamic comparator input current is caused by the
periodic switching of on-chip stray capacitances. These are
connected alternately to the output of the resistor ladder/
switch tree network and to the comparator input as part of
the operation of the chopper stabilized comparator.
If input filter capacitors are desired for noise reduction and
signal conditioning they will tend to average out the dynamic
comparator input current. It will then take on the characteristics of a DC bias current whose effect can be predicted
conventionally.
The average value of the comparator input current varies
directly with clock frequency and with VIN as shown in
Figure 6.
Typical Application
00567210
*Address latches needed for 8085 and SC/MP interfacing the ADC0808 to a microprocessor
TABLE 2. Microprocessor Interface Table
PROCESSOR
READ
WRITE
INTERRUPT (COMMENT)
8080
MEMR
MEMW
INTR (Thru RST Circuit)
8085
RD
WR
INTR (Thru RST Circuit)
Z-80
RD
WR
INT (Thru RST Circuit, Mode 0)
SC/MP
NRDS
NWDS
SA (Thru Sense A)
6800
VMA • φ2 • R/W
VMA • φ • R/W
IRQA or IRQB (Thru PIA)
13
www.national.com
ADC0808/ADC0809
Applications Information
ADC0808/ADC0809
Physical Dimensions
inches (millimeters)
unless otherwise noted
Molded Dual-In-Line Package (N)
Order Number ADC0808CCN or ADC0809CCN
NS Package Number N28B
www.national.com
14
inches (millimeters) unless otherwise noted (Continued)
Molded Chip Carrier (V)
Order Number ADC0808CCV or ADC0809CCV
NS Package Number V28A
LIFE SUPPORT POLICY
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:
1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.
National Semiconductor
Corporation
Americas
Email: [email protected]
www.national.com
National Semiconductor
Europe
Fax: +49 (0) 180-530 85 86
Email: [email protected]
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790
2. A critical component is any component of a life
support device or system whose failure to perform
can be reasonably expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.
National Semiconductor
Asia Pacific Customer
Response Group
Tel: 65-2544466
Fax: 65-2504466
Email: [email protected]
National Semiconductor
Japan Ltd.
Tel: 81-3-5639-7560
Fax: 81-3-5639-7507
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.
ADC0808/ADC0809 8-Bit µP Compatible A/D Converters with 8-Channel Multiplexer
Physical Dimensions