
Low Sensitivity Third Order Lowpass Butterworth Filter Using CFA
... the high−frequency model of the AD−844 CFA device; the passive−RC components of the circuit had then been approximately chosen to obtain a normalised filter function [12]. The effect of rx (≈ 40Ω) at the x−node of the device had been neglected since rx can be virtually eleminated in some improved [4 ...
... the high−frequency model of the AD−844 CFA device; the passive−RC components of the circuit had then been approximately chosen to obtain a normalised filter function [12]. The effect of rx (≈ 40Ω) at the x−node of the device had been neglected since rx can be virtually eleminated in some improved [4 ...
RLC circuits
... the resistor by 90 degrees. High pass and low pass filters can be made from inductors as well. However the inductors are usually bulkier and relatively expensive compared to capacitors (and more difficult to make in an integrated circuit) so are not used as commonly. Another limitation is that they ...
... the resistor by 90 degrees. High pass and low pass filters can be made from inductors as well. However the inductors are usually bulkier and relatively expensive compared to capacitors (and more difficult to make in an integrated circuit) so are not used as commonly. Another limitation is that they ...
Article - I
... transconductance amplifier (DDCCTA), was introduced [1]. The DDCCTA device is conceptually combination of the differential difference current conveyor (DDCC) [2] and the transconductance amplifier (TA) in monolithic chip for compact implementation of analog function circuits. This device provides th ...
... transconductance amplifier (DDCCTA), was introduced [1]. The DDCCTA device is conceptually combination of the differential difference current conveyor (DDCC) [2] and the transconductance amplifier (TA) in monolithic chip for compact implementation of analog function circuits. This device provides th ...
Chapter 3: Filters and Transfer Functions
... like (f/fc) to the first power when f << fc. (Can you guess how a 2 order high pass filter’s transfer function would behave when f << fc?) All 1st order high pass filters have the same shape when plotted this way. The transition from the region of little attenuation, f >> fc, to the region of strong ...
... like (f/fc) to the first power when f << fc. (Can you guess how a 2 order high pass filter’s transfer function would behave when f << fc?) All 1st order high pass filters have the same shape when plotted this way. The transition from the region of little attenuation, f >> fc, to the region of strong ...
Equalization (audio)

Equalization (British: equalisation) is the process of adjusting the balance between frequency components within an electronic signal. The most well known use of equalization is in sound recording and reproduction but there are many other applications in electronics and telecommunications. The circuit or equipment used to achieve equalization is called an equalizer. These devices strengthen (boost) or weaken (cut) the energy of specific frequency bands.In sound recording and reproduction, equalization is the process commonly used to alter the frequency response of an audio system using linear filters. Most hi-fi equipment uses relatively simple filters to make bass and treble adjustments. Graphic and parametric equalizers have much more flexibility in tailoring the frequency content of an audio signal. An equalizer is the circuit or equipment used to achieve equalization. Since equalizers, ""adjust the amplitude of audio signals at particular frequencies,"" they are, ""in other words, frequency-specific volume knobs.""In the field of audio electronics, the term ""equalization"" has come to include the adjustment of frequency responses for practical or aesthetic reasons, often resulting in a net response that is not truly equalized. The term EQ specifically refers to this variant of the term. Stereos typically have adjustable equalizers which boost or cut bass or treble frequencies. Broadcast and recording studios use sophisticated equalizers capable of much more detailed adjustments, such as eliminating unwanted sounds or making certain instruments or voices more prominent.Equalizers are used in recording studios, radio studios and production control rooms, and live sound reinforcement to correct the response of microphones, instrument pick-ups, loudspeakers, and hall acoustics. Equalization may also be used to eliminate unwanted sounds, make certain instruments or voices more prominent, enhance particular aspects of an instrument's tone, or combat feedback (howling) in a public address system. Equalizers are also used in music production to adjust the timbre of individual instruments by adjusting their frequency content and to fit individual instruments within the overall frequency spectrum of the mix.The most common equalizers in music production are parametric, semi-parametric, graphic, peak, and program equalizers. Graphic equalizers are often included in consumer audio equipment and software which plays music on home computers. Parametric equalizers require more expertise than graphic equalizers, and they can provide more specific compensation or alteration around a chosen frequency. This may be used in order to remove (or to create) a resonance, for instance.