• Study Resource
  • Explore
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Physics Level II-08 - Southington Public Schools
Physics Level II-08 - Southington Public Schools

Force and Motion PP
Force and Motion PP

Name - forehandspace
Name - forehandspace

Linear Impulse − Momentum
Linear Impulse − Momentum

ROUND ALL NUMERICAL ANSWERS TO 3 SIGNIFICANT
ROUND ALL NUMERICAL ANSWERS TO 3 SIGNIFICANT

Chapter 7 notes physics 2
Chapter 7 notes physics 2

template
template

Chap. 7 Momentum  - Coal City Unit District #1
Chap. 7 Momentum - Coal City Unit District #1

...  Newton’s 3rd Law: for every action, there is an equal and opposite reaction. ...
Mass and Motion
Mass and Motion

1 Physics
1 Physics

Energy
Energy

... Do problems that show how the force of gravity between two objects changes if • one or both of their masses change • the distance between them changes • the distance between them AND their masses change Forces and Newton’s Laws of Motion Be able to draw force diagrams for 3rd law pairs of objects an ...
review-for-qtr-opp-2016
review-for-qtr-opp-2016

Formulas velocity(speed) = distance/time a=vf
Formulas velocity(speed) = distance/time a=vf

1) A car starts to accelerate from rest with a=0
1) A car starts to accelerate from rest with a=0

A Second Look at Newton`s Law
A Second Look at Newton`s Law

Physics/Science/Math Days Crossword Puzzle
Physics/Science/Math Days Crossword Puzzle

Word - CBakken Home Page
Word - CBakken Home Page

Physics 310 - Assignment #1 - Due September 12
Physics 310 - Assignment #1 - Due September 12

... 2. Find a solution for the motion of an object of mass m with initial velocity v0 , moving through a fluid that produces both linear and quadratic fiscous drag, that is, find x(t) when the only forces acting on the object are Fdrag = −c1 v − c2 v|v|. Consider separately the two cases when the initi ...
L#4
L#4

... with a bead of mass m free to slide along the hoop. We wish to determine the ODE that governs θ(t) This problem is a natural for spherical coordinates. The bead has spherical coordinates: r(t) = R constant. It has azimuthal coordinate φ = Ω t specified. Its other spherical coordinate is θ(t) which ...
Impulse Linear Momentum Impulse
Impulse Linear Momentum Impulse

AP Rocket Propulsion
AP Rocket Propulsion

Problem Set 1
Problem Set 1

Standard Physics Final Exam Review Guide
Standard Physics Final Exam Review Guide

Impulse and Momentum
Impulse and Momentum

... Before he can move, a tackler, running at a velocity of +4.8 m/s, grabs him. The tackler holds onto the receiver, and the two move off together with a velocity of +2.6 m/s. The mass of the tackler is 116 kg. Assuming that momentum is conserved, find the mass of the receiver. ...
General Physics STUDY GUIDE
General Physics STUDY GUIDE

< 1 ... 148 149 150 151 152 153 154 155 >

Specific impulse

Specific impulse (usually abbreviated Isp) is a measure of the efficiency of rocket and jet engines. By definition, it is the impulse delivered per unit of propellant consumed, and is dimensionally equivalent to the thrust generated per unit propellant flow rate. If mass (kilogram or slug) is used as the unit of propellant, then specific impulse has units of velocity. If weight (newton or pound) is used instead, then specific impulse has units of time (seconds). The conversion constant between these two versions is the standard gravitational acceleration constant (g0). The higher the specific impulse, the lower the propellant flow rate required for a given thrust, and in the case of a rocket, the less propellant needed for a given delta-v, per the Tsiolkovsky rocket equation.Specific impulse is a useful value to compare engines, much like miles per gallon or liters per 100 kilometers is used for cars. A propulsion method and system with a higher specific impulse is more propellant-efficient. While the unit of seconds can seem confusing to laypeople, it is fairly simple to understand as ""hover-time"": how long a rocket can ""hover"" before running out of fuel, given the weight of that propellant/fuel. Of course, the weight of the rocket has to be taken out of consideration and so does the reduction in fuel weight as it's expended; the basic idea is ""how long can any given amount of x hold itself up"". Obviously that must mean ""...against Earth's gravity"", which means nothing in non-Earth conditions; hence Isp being given in velocity when propellant is measured in mass rather than weight, and the question becomes ""how fast can any given amount of x accelerate itself?""Note that Isp describes efficiency in terms of amount of propellant, and does not include the engine, structure or power source. Higher Isp means less propellant needed to impart a given momentum. Some systems with very high Isp (cf. ion thrusters) may have relatively very heavy/massive power generators, and produce thrust over a long period; thus, while they are ""efficient"" in terms of propellant mass carried, they may actually be quite poor at delivering high thrust as compared to ""less efficient"" engine/propellant designs.Another number that measures the same thing, usually used for air breathing jet engines, is specific fuel consumption. Specific fuel consumption is inversely proportional to specific impulse and the effective exhaust velocity. The actual exhaust velocity is the average speed of the exhaust jet, which includes fuel combustion products, nitrogen, and argon, as it leaves air breathing engine. The effective exhaust velocity is the exhaust velocity that the combusted fuel and atmospheric oxygen only would need to produce the same thrust. The two are identical for an ideal rocket working in vacuum, but are radically different for an air-breathing jet engine that obtains extra thrust by accelerating the non-combustible components of the air. Specific impulse and effective exhaust velocity are proportional.
  • studyres.com © 2025
  • DMCA
  • Privacy
  • Terms
  • Report