Physics Final Review Problems 2013 *Note: the following problems
... speed and accuracy and you only get one throw. Which option would you choose? Why? 22. A 40 kg skater traveling at 4 m/s overtakes a 60 kg skater traveling at 2 m/s in the same direction and collides with her. If they remain in contact after the collision, what is their final velocity? Work and Ener ...
... speed and accuracy and you only get one throw. Which option would you choose? Why? 22. A 40 kg skater traveling at 4 m/s overtakes a 60 kg skater traveling at 2 m/s in the same direction and collides with her. If they remain in contact after the collision, what is their final velocity? Work and Ener ...
Physics Chapter 17 Notes Electric forces and fields
... Electric field lines are lines that represent both the magnitude and direction of the electric field. When one end of a conductor is sharper than the other, excess charge tends to accumulate at the sharper end, resulting in a larger charge per unit area and therefore a larger ...
... Electric field lines are lines that represent both the magnitude and direction of the electric field. When one end of a conductor is sharper than the other, excess charge tends to accumulate at the sharper end, resulting in a larger charge per unit area and therefore a larger ...
Describing Motion Verbally with Speed and Velocity
... 11. Earth-orbiting astronauts feel weightless in space because _____. Choose all that apply. a. They are in free-fall motion. b. There is an absence of contact forces acting upon their bodies. c. The weight of objects diminish to close to 0 N at these distances from Earth's center. d. There is no gr ...
... 11. Earth-orbiting astronauts feel weightless in space because _____. Choose all that apply. a. They are in free-fall motion. b. There is an absence of contact forces acting upon their bodies. c. The weight of objects diminish to close to 0 N at these distances from Earth's center. d. There is no gr ...
UConn1201QFall2010 - BHS Science Department
... 0.5 m. (a) What total energy does it take to melt the ice once spring comes? (b) If this energy is provided by sunlight shining on the lake at 200 W/m2, and this energy is only half absorbed, how long will it take the ice on the lake to melt? ...
... 0.5 m. (a) What total energy does it take to melt the ice once spring comes? (b) If this energy is provided by sunlight shining on the lake at 200 W/m2, and this energy is only half absorbed, how long will it take the ice on the lake to melt? ...
Explaining Motion
... 1. Forces of 4 N and 6 N act on the object. What is the minimum value for the sum of these two forces? 2. Two ropes are being used to pull a car out of a ditch. Each rope exerts a force of 700 N on the car. Is it possible for the sum of these two forces to have a magnitude of 1000N? Explain your rea ...
... 1. Forces of 4 N and 6 N act on the object. What is the minimum value for the sum of these two forces? 2. Two ropes are being used to pull a car out of a ditch. Each rope exerts a force of 700 N on the car. Is it possible for the sum of these two forces to have a magnitude of 1000N? Explain your rea ...
Forces & Newton`s Laws
... • Types of forces: 1. Friction- force that opposes motion between two surfaces that are touching. – Air Resistance – Special type of frictional force. • Occurs when the object is traveling through the air ...
... • Types of forces: 1. Friction- force that opposes motion between two surfaces that are touching. – Air Resistance – Special type of frictional force. • Occurs when the object is traveling through the air ...
Mass versus weight
In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.