• Study Resource
  • Explore Categories
    • Arts & Humanities
    • Business
    • Engineering & Technology
    • Foreign Language
    • History
    • Math
    • Science
    • Social Science

    Top subcategories

    • Advanced Math
    • Algebra
    • Basic Math
    • Calculus
    • Geometry
    • Linear Algebra
    • Pre-Algebra
    • Pre-Calculus
    • Statistics And Probability
    • Trigonometry
    • other →

    Top subcategories

    • Astronomy
    • Astrophysics
    • Biology
    • Chemistry
    • Earth Science
    • Environmental Science
    • Health Science
    • Physics
    • other →

    Top subcategories

    • Anthropology
    • Law
    • Political Science
    • Psychology
    • Sociology
    • other →

    Top subcategories

    • Accounting
    • Economics
    • Finance
    • Management
    • other →

    Top subcategories

    • Aerospace Engineering
    • Bioengineering
    • Chemical Engineering
    • Civil Engineering
    • Computer Science
    • Electrical Engineering
    • Industrial Engineering
    • Mechanical Engineering
    • Web Design
    • other →

    Top subcategories

    • Architecture
    • Communications
    • English
    • Gender Studies
    • Music
    • Performing Arts
    • Philosophy
    • Religious Studies
    • Writing
    • other →

    Top subcategories

    • Ancient History
    • European History
    • US History
    • World History
    • other →

    Top subcategories

    • Croatian
    • Czech
    • Finnish
    • Greek
    • Hindi
    • Japanese
    • Korean
    • Persian
    • Swedish
    • Turkish
    • other →
 
Profile Documents Logout
Upload
Cunningham, Drew – Homework 30 – Due: Apr 14 2006
Cunningham, Drew – Homework 30 – Due: Apr 14 2006

... which is NOT the right answer. This is because the attraction of gravity decreases as we go further away from the planet, requiring less initial velocity than if the attraction had been constant (which our simple kinematics formula assumes). It is, however, a good approximation when we are close to ...
105old Exam2 solutio..
105old Exam2 solutio..

... passes over a hill of radius 15 m, as shown. At the top of the hill, the car has a speed of 8.0 m/s. What is the force of the track on the car at the top of the hill? ...
Gravity - E
Gravity - E

Gravity: the Laws of Motions
Gravity: the Laws of Motions

Circular
Circular

Chapter 3 Chapter 4
Chapter 3 Chapter 4

Gravitation
Gravitation

Physics 11 - hrsbstaff.ednet.ns.ca
Physics 11 - hrsbstaff.ednet.ns.ca

... explained by Newton's First Law. 7. If the vector sum of all forces acting on an object is precisely zero, the object could still be moving. 8. An elevator moves vertically upward with a constant speed. The vector sum of all the forces acting on the elevator is precisely zero. 9. For any pair of sur ...
inertia! - Mr-Durands
inertia! - Mr-Durands

... • Newton’s first law of motion states ...
NEWTON`S THIRD LAW ANSWERS
NEWTON`S THIRD LAW ANSWERS

... NEWTON’S THIRD LAW ANSWERS  ...
Newton`s 1st Law of Motion
Newton`s 1st Law of Motion

Class Notes
Class Notes

L 6
L 6

Document
Document

Print › Energy in Motion | Quizlet
Print › Energy in Motion | Quizlet

Slide 1
Slide 1

Practice Problems Semester 1 Exam 1. Express the measurements
Practice Problems Semester 1 Exam 1. Express the measurements

... velocity of 17.0 m/s. Ignoring air resistance: A. What is the maximum height of the soccer ball? B. How long was the ball in the air? C. What is the horizontal distance the ball travelled? ...
Universal Gravitation
Universal Gravitation

... For Newton’s idea to advance from hypothesis to scientific theory, it would have to be tested. • He reasoned that the mass of the moon should not affect how it falls, just as mass has no effect on the acceleration of freely falling objects on Earth. • How far the moon, or an apple at Earth’s surface ...
Newton`s Laws and Classical Mechanics
Newton`s Laws and Classical Mechanics

force of friction - ShareStudies.com
force of friction - ShareStudies.com

File
File

Force of Gravity
Force of Gravity

Review sheet for - The Russell Elementary Science Experience
Review sheet for - The Russell Elementary Science Experience

Topic 2.2 ppt
Topic 2.2 ppt

Practice Final Exam from Wilf
Practice Final Exam from Wilf

< 1 ... 192 193 194 195 196 197 198 199 200 ... 229 >

Mass versus weight



In everyday usage, the mass of an object is often referred to as its weight though these are in fact different concepts and quantities. In scientific contexts, mass refers loosely to the amount of ""matter"" in an object (though ""matter"" may be difficult to define), whereas weight refers to the force experienced by an object due to gravity. In other words, an object with a mass of 1.0 kilogram will weigh approximately 9.81 newtons (newton is the unit of force, while kilogram is the unit of mass) on the surface of the Earth (its mass multiplied by the gravitational field strength). Its weight will be less on Mars (where gravity is weaker), more on Saturn, and negligible in space when far from any significant source of gravity, but it will always have the same mass.Objects on the surface of the Earth have weight, although sometimes this weight is difficult to measure. An example is a small object floating in a pool of water (or even on a dish of water), which does not appear to have weight since it is buoyed by the water; but it is found to have its usual weight when it is added to water in a container which is entirely supported by and weighed on a scale. Thus, the ""weightless object"" floating in water actually transfers its weight to the bottom of the container (where the pressure increases). Similarly, a balloon has mass but may appear to have no weight or even negative weight, due to buoyancy in air. However the weight of the balloon and the gas inside it has merely been transferred to a large area of the Earth's surface, making the weight difficult to measure. The weight of a flying airplane is similarly distributed to the ground, but does not disappear. If the airplane is in level flight, the same weight-force is distributed to the surface of the Earth as when the plane was on the runway, but spread over a larger area.A better scientific definition of mass is its description as being composed of inertia, which basically is the resistance of an object being accelerated when acted on by an external force. Gravitational ""weight"" is the force created when a mass is acted upon by a gravitational field and the object is not allowed to free-fall, but is supported or retarded by a mechanical force, such as the surface of a planet. Such a force constitutes weight. This force can be added to by any other kind of force.For example, in the photograph, the girl's weight, subtracted from the tension in the chain (respectively the support force of the seat), yields the necessary centripetal force to keep her swinging in an arc. If one stands behind her at the bottom of her arc and abruptly stops her, the impetus (""bump"" or stopping-force) one experiences is due to acting against her inertia, and would be the same even if gravity were suddenly switched off.While the weight of an object varies in proportion to the strength of the gravitational field, its mass is constant (ignoring relativistic effects) as long as no energy or matter is added to the object. Accordingly, for an astronaut on a spacewalk in orbit (a free-fall), no effort is required to hold a communications satellite in front of him; it is ""weightless"". However, since objects in orbit retain their mass and inertia, an astronaut must exert ten times as much force to accelerate a 10‑ton satellite at the same rate as one with a mass of only 1 ton.On Earth, a swing set can demonstrate this relationship between force, mass, and acceleration. If one were to stand behind a large adult sitting stationary on a swing and give him a strong push, the adult would temporarily accelerate to a quite low speed, and then swing only a short distance before beginning to swing in the opposite direction. Applying the same impetus to a small child would produce a much greater speed.
  • studyres.com © 2026
  • DMCA
  • Privacy
  • Terms
  • Report