TPS63027 High Current, High Efficiency Single
... active switch, one rectifying switch, one switch is held on, and one switch held off. Therefore, it operates as a buck converter when the input voltage is higher than the output voltage, and as a boost converter when the input voltage is lower than the output voltage. There is no mode of operation i ...
... active switch, one rectifying switch, one switch is held on, and one switch held off. Therefore, it operates as a buck converter when the input voltage is higher than the output voltage, and as a boost converter when the input voltage is lower than the output voltage. There is no mode of operation i ...
TBU-DT085-300-WH Datasheet
... Time for the device to go from normal operating state to protected state Current through the triggered TBU® device with 50 Vdc circuit voltage Voltage below which the triggered TBU® device will transition to normal operating state Junction to package pads - FR4 using recommended pad layout Junction ...
... Time for the device to go from normal operating state to protected state Current through the triggered TBU® device with 50 Vdc circuit voltage Voltage below which the triggered TBU® device will transition to normal operating state Junction to package pads - FR4 using recommended pad layout Junction ...
TBU-DT085-100-WH
... Time for the device to go from normal operating state to protected state Current through the triggered TBU® device with 50 Vdc circuit voltage Voltage below which the triggered TBU® device will transition to normal operating state Junction to package pads - FR4 using recommended pad layout Junction ...
... Time for the device to go from normal operating state to protected state Current through the triggered TBU® device with 50 Vdc circuit voltage Voltage below which the triggered TBU® device will transition to normal operating state Junction to package pads - FR4 using recommended pad layout Junction ...
T5 Basic Electricity Questions
... what would it show if it were calibrated in kilohertz? A. 0.003525 kHz B. 35.25 kHz ...
... what would it show if it were calibrated in kilohertz? A. 0.003525 kHz B. 35.25 kHz ...
MAX17498A/MAX17498B/MAX17498C AC-DC and DC
... is 250kHz, while that of the MAX17498B is 500kHz. These frequencies allow the use of tiny magnetic and filter components, resulting in compact, cost-effective power supplies. An EN/UVLO input allows the user to start the power supply precisely at the desired input voltage, while also functioning as ...
... is 250kHz, while that of the MAX17498B is 500kHz. These frequencies allow the use of tiny magnetic and filter components, resulting in compact, cost-effective power supplies. An EN/UVLO input allows the user to start the power supply precisely at the desired input voltage, while also functioning as ...
The Basic Principles of Electrical Overstress (EOS)
... Latch-up conditions that are common in integrated circuits due to the internal circuitry and construction of ICs are also considered to be EOS events. Power-on and power-off transients – also called spikes – can come from the driver of an LED circuit or system. In applications with discrete control, ...
... Latch-up conditions that are common in integrated circuits due to the internal circuitry and construction of ICs are also considered to be EOS events. Power-on and power-off transients – also called spikes – can come from the driver of an LED circuit or system. In applications with discrete control, ...
ANSI numbers IEEE Standard Electric Power System
... protected apparatus (other than the loadcarrying windings of machines and transformers as covered by device function number 49) or of a liquid or other medium exceeds a predetermined value; or when the temperature of the protected apparatus or of any medium decreases below a predetermined value. 27. ...
... protected apparatus (other than the loadcarrying windings of machines and transformers as covered by device function number 49) or of a liquid or other medium exceeds a predetermined value; or when the temperature of the protected apparatus or of any medium decreases below a predetermined value. 27. ...
Basic Electronics
... when high reverse voltage is applied. The lesser doping means the depletion width is large and so electric field within depletion region is not so high. Hence the electric field would not be able to pull out electrons from the outer shell of atoms and breakdown doesn’t occur in depletion region. B ...
... when high reverse voltage is applied. The lesser doping means the depletion width is large and so electric field within depletion region is not so high. Hence the electric field would not be able to pull out electrons from the outer shell of atoms and breakdown doesn’t occur in depletion region. B ...
50-mA, 24-V, 3.2-μA Supply Current Low
... Over operating junction temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 1 V, IOUT = 1 mA, and COUT = 1 μF, unless otherwise noted. Typical values are at TJ = 25°C. ...
... Over operating junction temperature range (TJ = –40°C to 125°C), VIN = VOUT(nom) + 1 V, IOUT = 1 mA, and COUT = 1 μF, unless otherwise noted. Typical values are at TJ = 25°C. ...
LM3914 Dot/Bar Display Driver (Rev. B)
... The LM3914 is relatively low-powered itself, and since any number of LEDs can be powered from about 3V, it is a very efficient display driver. Typical standby supply current (all LEDs OFF) is 1.6mA (2.5mA max). However, any reference loading adds 4 times that current drain to the V+ (pin 3) supply i ...
... The LM3914 is relatively low-powered itself, and since any number of LEDs can be powered from about 3V, it is a very efficient display driver. Typical standby supply current (all LEDs OFF) is 1.6mA (2.5mA max). However, any reference loading adds 4 times that current drain to the V+ (pin 3) supply i ...
FDN360P - Fairchild
... arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance w ...
... arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance w ...
Memristor
The memristor (/ˈmɛmrɨstər/; a portmanteau of memory resistor) was a term coined in 1971 by circuit theorist Leon Chua as a missing non-linear passive two-terminal electrical component relating electric charge and magnetic flux linkage. The operation of RRAM devices was recently connected to the memristor concept According to the characterizing mathematical relations, the memristor would hypothetically operate in the following way: The memristor's electrical resistance is not constant but depends on the history of current that had previously flowed through the device, i.e., its present resistance depends on how much electric charge has flowed in what direction through it in the past. The device remembers its history - the so-called non-volatility property: When the electric power supply is turned off, the memristor remembers its most recent resistance until it is turned on again.Leon Chua has more recently argued that the definition could be generalized to cover all forms of two-terminal non-volatile memory devices based on resistance switching effects although some experimental evidence contradicts this claim, since a non-passive nanobattery effect is observable in resistance switching memory. Chua also argued that the memristor is the oldest known circuit element, with its effects predating the resistor, capacitor and inductor.In 2008, a team at HP Labs claimed to have found Chua's missing memristor based on an analysis of a thin film of titanium dioxide; the HP result was published in Nature. The memristor is currently under development by various teams including Hewlett-Packard, SK Hynix and HRL Laboratories.These devices are intended for applications in nanoelectronic memories, computer logic and neuromorphic/neuromemristive computer architectures. In October 2011, the HP team announced the commercial availability of memristor technology within 18 months, as a replacement for Flash, SSD, DRAM and SRAM. Commercial availability of new memory was more recently estimated as 2018. In March 2012, a team of researchers from HRL Laboratories and the University of Michigan announced the first functioning memristor array built on a CMOS chip.