Download Explain how cell size and shape affect the overall rate of nutrient

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Tissue engineering wikipedia , lookup

Cell nucleus wikipedia , lookup

Cell cycle wikipedia , lookup

Cell growth wikipedia , lookup

Cell culture wikipedia , lookup

Extracellular matrix wikipedia , lookup

Cell encapsulation wikipedia , lookup

Cytosol wikipedia , lookup

JADE1 wikipedia , lookup

Mitosis wikipedia , lookup

Cellular differentiation wikipedia , lookup

Amitosis wikipedia , lookup

Cell membrane wikipedia , lookup

Cytokinesis wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

Signal transduction wikipedia , lookup

Endomembrane system wikipedia , lookup

List of types of proteins wikipedia , lookup

Transcript
Study Objectives for Unit 3
Cells
Outline the cell theory.
Discuss the evidence for the cell theory.
Describe scientific hypotheses about the origin of life on Earth.
Explain endosymbyosis
State that unicellular organisms carry out all the functions of life.
Note:Include metabolism, response, homeostasis, growth, reproduction and nutrition.
Compare the relative sizes of molecules, cell membrane thickness, viruses, bacteria, organelles and cells,
using the appropriate SI unit.
Note: Appreciation of relative size is required, such as molecules (1 nm), thickness of
membranes (10 nm), viruses (100 nm), bacteria (1 µm), organelles (up to 10 µm), and most cells
(up to 100 µm). The three-dimensional nature/shape of cells should be emphasized.
Calculate the linear magnification of drawings and the actual size of specimens in images of known
magnification.
Note: Magnification could be stated (for example, X250) or indicated by means of a scale bar.
Explain the importance of the surface area to volume ratio as a factor limiting cell size.
Note: The rate of heat production/waste production/resource consumption of a cell is a function
of its volume, whereas the rate of exchange of materials and energy (heat) is a function of its
surface area.
Use calculated surface area to volume ratios to predict which cell(s) might eliminate wastes or procure
nutrients faster by diffusion.
Explain how cell size and shape affect the overall rate of nutrient intake & the rate of waste elimination.
Explain how internal membranes and organelles contribute to cell functions.
Justify the selection of data regarding the types of molecules that an animal, plant, or bacterium will take
up as necessary building blocks & excrete as waste products.
Represent graphically or model quantitatively the exchange of molecules between an organism & its
environment, and the subsequent use of these molecules to build new molecules that facilitate dynamic
homeostasis, growth, & reproduction.
State that multicellular organisms show emergent properties.
Note: Emergent properties arise from the interaction of component parts: the whole is greater
than the sum of its parts.The concept of emergent properties has many implications in biology.
Life itself can be viewed as an emergent property, and the nature of life could be discussed in the
light of this, including differences between living and non-living things and problems about
defining death in medical decisions.
Explain that cells in multicellular organisms differentiate to carry out specialized functions by expressing
some of their genes but not others.
State that stem cells retain the capacity to divide and have the ability to differentiate along different
pathways.
Outline one therapeutic use of stem cells.
Note: In 2005, stem cells were used to restore the insulation tissue of neurons in laboratory rats,
resulting in subsequent improvements in their mobility. Any example of the therapeutic use of
stem cells in humans or other animals can be chosen.
Prokaryotic cells
Draw and label a diagram of the ultrastructure of Escherichia coli (E. coli) as an example of a
prokaryote.
Note: The diagram should show the cell wall, plasma membrane, cytoplasm, pili, flagella,
ribosomes and nucleoid (region containing naked DNA).
These go
together
Annotate the diagram with the functions of each named structure.
Identify structures in electron micrographs of E. coli.
State that prokaryotic cells divide by binary fission.
Eukaryotic cells
Draw and label a diagram of the ultrastructure of a liver cell as an example of an animal cell.
Note: The diagram should show free ribosomes, rough endoplasmic reticulum (rER), lysosome,
Golgi apparatus, mitochondrion and nucleus. The term Golgi apparatus will be used in place of
Golgi body, Golgi complex or dictyosome.
These go
together
Annotate the diagram with the functions of each named structure.
Identify structures from electron micrographs of liver cells.
Compare prokaryotic and eukaryotic cells.





Note:Similarities should be given and differences should include:
naked DNA versus DNA associated with proteins
DNA in cytoplasm versus DNA enclosed in a nuclear envelope
no mitochondria versus mitochondria
70S versus 80S ribosomes
eukaryotic cells have internal membranes that compartmentalize their functions.
State three differences between plant and animal cells.
Outline two roles of extracellular components.
Note: The plant cell wall maintains cell shape, prevents excessive water uptake, and holds the
whole plant up against the force of gravity. Animal cells secrete glycoproteins that form the
extracellular matrix. This functions in support, adhesion and movement.
Membranes
Draw and label a diagram to show the structure of membranes.
Note: The diagram should show the phospholipid bilayer, cholesterol, glycoproteins, and integral
and peripheral proteins. Use the term plasma membrane, not cell surface membrane, for the
membrane surrounding the cytoplasm. Integral proteins are embedded in the phospholipid of the
membrane, whereas peripheral proteins are attached to its surface. Variations in composition
related to the type of membrane are not required.
Explain how the hydrophobic and hydrophilic properties of phospholipids help to maintain the structure
of cell membranes.
List the functions of membrane proteins.
Note: Include the following: hormone binding sites, immobilized enzymes, cell adhesion, cell-tocell communication, channels for passive transport, and pumps for active transport.
Define diffusion and osmosis.
Note: Diffusion is the passive movement of particles from a region of high concentration to a
region of low concentration.
Osmosis is the passive movement of water molecules, across a partially permeable membrane,
from a region of lower solute concentration to a region of higher solute concentration.
Calculate the water potential of a cell & its surroundings to determine movement of water
Explain passive transport across membranes by simple diffusion and facilitated diffusion.
Explain the role of protein pumps and ATP in active transport across membranes.
Explain how vesicles are used to transport materials within a cell between the rough endoplasmic
reticulum, Golgi apparatus and plasma membrane.
Describe how the fluidity of the membrane allows it to change shape, break and
re-form during endocytosis and exocytosis.
Analyze situations or solve problems qualitatively and quantitatively, using
representations and models to investigate whether dynamic homeostasis is
maintained by the active movement of molecules across membranes.
Define resting potential and action potential (depolarization and repolarization).
Explain how a nerve impulse passes along a non-myelinated neuron.
Note: Include the movement of Na+ and K+ ions to create a resting potential and
an action potential.
Cell Communication Objectives
Describe basic chemical processes for cell communication shared across evolutionary lines of descent.
Generate scientific questions involving cell communication as it relates to the process of evolution.
Describe features of a cell signaling pathway.
Explain cell communication through cell to cell direct contact or through chemical signaling.
Create representations that depict how cell to cell communication occurs by direct contact or from a distance
through chemical signaling.
Describe a model that expresses the key elements of signal transduction pathways by which a
signal is converted to a cellular response.
Justify claims based on scientific evidence that changes in signal transduction pathways can
alter cellular response.
Describe a model that expresses key elements to show how change in signal transduction can
alter cellular response
Explain how certain drugs affect signal reception and consequently, signal transduction pathways.