* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Содержание учебно-методического комплекса
Electromagnetism wikipedia , lookup
Quantum vacuum thruster wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Classical mechanics wikipedia , lookup
Old quantum theory wikipedia , lookup
Standard Model wikipedia , lookup
Elementary particle wikipedia , lookup
Faster-than-light wikipedia , lookup
Nuclear physics wikipedia , lookup
Renormalization wikipedia , lookup
Relational approach to quantum physics wikipedia , lookup
History of optics wikipedia , lookup
Anti-gravity wikipedia , lookup
History of quantum field theory wikipedia , lookup
Theory of everything wikipedia , lookup
Thomas Young (scientist) wikipedia , lookup
A Brief History of Time wikipedia , lookup
Fundamental interaction wikipedia , lookup
History of subatomic physics wikipedia , lookup
Time in physics wikipedia , lookup
History of physics wikipedia , lookup
Содержание учебно-методического комплекса № п/п компонент УМК I. Рабочая программа II. Методические указания для преподавателей III. Методические рекомендации для студентов имя файла* кол-во страниц Рабочая программа.doc Рекомендации для преподавателей.doc Рекомендации для студентов.doc 22 Учебно-методические материалы.doc 29 Контрольноизмерительные материалы.doc 3 2 2 – по подготовке к практическим занятиям – по организации самостоятельной работы IV. Учебно-методические материалы V. - новейшие научные и научно-популярные материалы по последним достижениям в мире в области физики (для проектных заданий) - примеры (образцы) докладов по предложенным научным темам Контрольно-измерительные материалы – задания для подготовки докладов – задания для написания рефератов – задания для перевода специализированных текстов – задания по самостоятельной работе VI. Словарь терминов и персоналий Словарь терминов.doc 10 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кемеровский государственный университет» Факультет романо-германской филологии УТВЕРЖДАЮ Декан физического факультета название факультета / « Титов Ф.В. / 201 г. » Рабочая программа дисциплины «Иностранный язык в сфере профессиональной коммуникации» (Наименование дисциплины (модуля)) Направление подготовки 011200 ФИЗИКА (шифр, название направления) Магистерская программа Физика конденсированного состояния вещества Квалификация (степень) выпускника МАГИСТР Форма обучения очная (очная, очно-заочная и др.) Кемерово 2011 1. Цели освоения дисциплины Целями освоения дисциплины являются: освоение делового и научного стилей иностранного языка, которые используются на официальных деловых встречах, конференциях; развитие способности уверенно использовать английский язык на уровне, необходимом для общения с его носителями в устной и письменной речи. 2. Место дисциплины «Иностранный язык в сфере профессиональной коммуникации» в структуре ООП магистратуры. Для изучения данного аспекта необходимы знания, умения и компетенции, полученные студентами за 4 года обучения в вузе. Английский язык неразрывно связан с базовыми дисциплинами профессионального цикла. Эта дисциплина, с одной стороны, создавала и создаёт предпосылки для изучения названных выше дисциплин, с другой стороны, обобщает и систематизирует уже полученную лингвистическую подготовку бакалавров. Дисциплина изучается в I-II семестрах. 3. Компетенции обучающегося, формируемые в результате освоения дисциплины Данная учебная дисциплина способствует формированию следующих общекультурных компетенций: способностью демонстрировать углубленные знания в области гуманитарных и экономических наук (ОК-2); способностью информационных самостоятельно технологий приобретать и использовать с в помощью практической деятельности новые знания и умения, в том числе в новых областях знаний, непосредственно не связанных со сферой деятельности, расширять и углублять своё научное мировоззрение (ОК-3); способностью использовать углублённые знания правовых и этических норм при оценке последствий своей профессиональной деятельности, при разработке и осуществлении социально-значимых проектов (ОК4); способностью адаптироваться к изменению научного и научнопроизводственного профиля своей профессиональной деятельности, к изменению социокультурных и социальных условий деятельности (ОК-7); способностью к коммуникации в научной, производственной и социально-общественной сферах деятельности, свободное владение русским и иностранным языками как средством делового общения (ОК-8); способностью к активной социальной мобильности, способностью к организации научно-исследовательских и научно-производственных работ, способностью к управлению научным коллективом (ОК-9); Выпускник должен обладать следующими общепрофессиональными компетенциями (ПК): способностью составления и и готовностью оформления применять на практике научно-технической навыки документации, научных отчетов, обзоров, докладов и статей (в соответствии с профилем магистерской программы) на иностранном языке (ПК-4); способностью использовать свободное владение профессиональнопрофилированными знаниями в области информационных технологий, современных компьютерных сетей, программных продуктов, ресурсов Интернет и иностранного языка для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки (ПК-5); научно-инновационная деятельность: способностью свободно владеть профессиональными знаниями для анализа и синтеза физической информации (в соответствии с профилем подготовки) на иностранном языке (ПК-7); организационно-управленческая деятельность: способностью организовать и планировать физические исследования в зарубежных научно-исследовательских институтах и центрах (ПК-9). В результате изучения дисциплины студент должен: знать: необходимые шаблоны деловой корреспонденции на иностранном языке и разговорные формулы и клише, необходимые для решения общекультурных, профессиональных и научных задач на международных конференциях, симпозиумах, круглых столах, при проведении исследований в зарубежных центрах и т.д.; уметь: интегрировать знание иностранного языка и профессиональных навыков и умений в области физики для организации и осуществления социально-значимых проектов; владеть: навыками диалогической и монологической (устной и письменной) речи на иностранном языке для участия в форумах, беседах об актуальных научных направлениях, современных достижениях в области физики и связанных с ними экономических и экологических проблемах как в России, так и в стране изучаемого языка. 4. Структура и содержание дисциплины: Общая трудоемкость дисциплины составляет 144 часа. 4.1. Объём дисциплины и виды учебной работы (в часах) 4.1.1. Объём и виды учебной работы (в часах) по дисциплине в целом Вид учебной работы Общая трудоемкость базового модуля дисциплины Аудиторные занятия (всего) В том числе: Лекции Семинары Самостоятельная работа Всего часов 144 36 36 103 В том числе: Контрольная работа Вид промежуточного контроля Вид итогового контроля 2 Зачёт (1 ч) экзамен (2 ч) Неделя семестра Общая трудоёмко сть (часах) Раздел № Дисципли п/ ны п Семестр 4.1.2. Разделы базового обязательного модуля дисциплины и трудоемкость по видам занятий (в часах) всего Виды учебной работы, включая самостоятельную работу студентов и трудоемкость (в часах) Учебная работа лекции Практ. В.т.ч. Самосто акти ятельная вных работа форм Формы текущего контроля успеваемо сти (по неделям семестра) Форма промежуто чной аттестаци и (по семестрам) 1 Английск ий язык для деловых встреч, конферен ций 1 1-18 72 – 18 18 51,5 1. Индив идуал ьный опрос 2. Фронт альны й опрос 3. Ролев ая игра с устны м перев одом 4. Делов ая игра 5. Прове рка проек тных работ 6. Прове рка 2 Английск ий язык для общения по вопросам професси ональной сферы 2 1-18 72 – 18 18 51,5 рефер ирова ния статьи 7. Прове рка напис ания письм а 8. Презе нтаци я аннот аций научн ых статей 9. Контр ольна я работ а 10.Зачёт 1. Устн ый опрос 2. Фронт альны й опрос 3. Рефер ат 4. Прове рка задан ия по перев оду 5. Устн ый опрос 6. Ролев ая игра 7. Фронт альны й опрос 8. Контр ольна я работ а 9. Экзам ен 4.2. Содержание дисциплины Содержание разделов базового обязательного модуля дисциплины № Наименование раздела дисциплины Содержание раздела дисциплины 1 Английский язык для деловых встреч, конференций Презентация основного лексикограмматического материала, необходимого для общения на международном уровне Работа с научными и деловыми документами, необходимыми для участия в зарубежных научных конференциях и грантовых программах. Участие в конференциях. Конкурсы, гранты, стипендии для студентов-физиков в России и за Результат обучения, формируем ые компетенци и Знать: лексикограмматичес кий запас по теме. Уметь: употреблять его в речи. Владеть: культурой мышления; (ОК-2); Знать: основные клише, схемы, правила письменного и устного общения на рубежом. английском языке. Уметь: создавать научные и деловые тексты. Владеть: навыками подготовки научных обзоров, аннотаций, составления рефератов и библиографий по тематике проводимых исследований, приемами библиографического описания (ПК-4) (ПК-7) Образование «Степень магистра» за рубежом и в России. Развитие науки физики в современных условиях. Актуальные вопросы международных конференций по проблемам физики. Молодые учёные и их место в развитии науки. Знать: правила культуры поведения и мышления делового общения. Владеть: языковыми выражениями для научных дискуссий, выступлений с сообщениями, докладами, устного, письменного и виртуального (размещение в информационных сетях) представления. Уметь: высказываться о собственных, чужих исследованиях и принимать участие в форумах (ПК-5) Английский язык для общения по вопросам профессиональной сферы Физика. Направления исследований. Известные и новейшие достижения. Знать: специализир ованные лексические единицы (термины) Уметь: активно употреблять их в профессиона льном общении. Уметь: выполнять перевод текста с русского языка на иностранны й; описывать собственный проект; составлять аннотацию своего исследовани я и тезисов к своему исследовани ю (ОК-4) (ПК-7) (ПК-9) Библиотека. Поиск информации в каталогах (в том числе в электронных) и в сети Интернет. Заказ книг. Знать: речевые штампы. Уметь: составлять письма по запросу информации (ОК-3) (ПК-5) Университет. Оформление документов для учёбы или стажировки в зарубежном вузе. Оформление документов на участие в грантовых программах. 5. Образовательные технологии Знать: лексику по теме. Владеть: навыками создания текстов Уметь: беседовать с ППС и обучающимися в зарубежном вузе. (ОК-7) (ОК-8) (ОК-9) (ПК-9) Разбор конкретных ситуаций, подготовка докладов на семинарах, участие в их обсуждении, подготовка рефератов, участие в обсуждении рефератов, проектные задания по изучаемым темам, интерактивный поиск информации в Интернете, создание аналитического обзора собранной в Интернете информации, перевод научных текстов. 6. Учебно-методическое обеспечение самостоятельной работы студентов. Оценочные средства и формы текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. Подготовка докладов, рефератов, интерактивный поиск информации в Интернете, создание аналитического обзора собранной в Интернете информации. Изучение специализированной терминологии дисциплины (глоссарий приведен в пункте VI данного УМК). Перевод с английского языка на русский современных текстов по уже широко известным и новейшим достижениям в области физики в международных СМИ. Примеры текстов, предоставляемых студентам для выполнения перевода с английского на русский язык (полная подборка текстов на перевод и средств текущего и финального контроля приведены ниже в пункте IV Учебно-методические материалы и пункте V контрольно-измерительные материалы). Текст 1 Science and Technology 31 May 2011 «Isaac Newton: One of the World’s Greatest Scientists» Much of today's science of physics is based on Newton's discovery of the three laws of motion and his theory of gravity. Newton also developed one of the most powerful tools of mathematics. It is the method we call calculus. Late in his life, Newton said of his work: "If I saw further than other men, it was because I stood on the shoulders of giants. " One of those giants was the great Italian scientist, Galileo. Galileo died the same year Newton was born. Another of the giants was the Polish scientist Nicholas Copernicus. He lived a hundred years before Newton. Copernicus had begun a scientific revolution. It led to a completely new understanding of how the universe worked. Galileo continued and expanded the work of Copernicus. Isaac Newton built on the ideas of these two scientists and others. He found and proved the answers for which they searched. Isaac Newton was born in Woolsthorpe, England, on December twenty-fifth, sixteen forty-two. He was born early. He was a small baby and very weak. No one expected him to survive. But he surprised everyone. He had one of the most powerful minds in history. And he lived until he was eighty-four. Newton's father died before he was born. His mother married again a few years later. She left Isaac with his grandmother. The boy was not a good student. Yet he liked to make things, such as kites and clocks and simple machines. Newton also enjoyed finding new ways to answer questions or solve problems. As a boy, for example, he decided to find a way to measure the speed of the wind. On a windy day, he measured how far he could jump with the wind at his back. Then he measured how far he could jump with the wind in his face. From the difference between the two jumps, he made his own measure of the strength of the wind. Strangely, Newton became a much better student after a boy kicked him in the stomach. The boy was one of the best students in the school. Newton decided to get even by getting higher marks than the boy who kicked him. In a short time, Newton became the top student at the school. Newton left school to help on the family farm. It soon became clear, however, that the boy was not a good farmer. He spent his time solving mathematical problems, instead of taking care of the crops. He spent hours visiting a bookstore in town, instead of selling his vegetables in the market. An uncle decided that Newton would do better as a student than as a farmer. So he helped the young man enter Cambridge University to study mathematics. Newton completed his university studies five years later, in sixteen sixtyfive. He was twenty-two years old. At that time, a deadly plague was spreading across England. To escape the disease, Newton returned to the family farm. He did more thinking than farming. In doing so, he found the answers to some of the greatest mysteries of science. Newton used his great skill in mathematics to form a better understanding of the world and the universe. He used methods he had learned as a boy in making things. He experimented. Then he studied the results and used what he had learned to design new experiments. Newton's work led him to create a new method in mathematics for measuring areas curved in shape. He also used it to find how much material was contained in solid objects. The method he created became known as integral calculus. One day, sitting in the garden, Newton watched an apple fall from a tree. He began to wonder if the same force that pulled the apple down also kept the moon circling the Earth. Newton believed it was. And he believed it could be measured. He called the force "gravity." He began to examine it carefully. He decided that the strength of the force keeping a planet in orbit around the sun depended on two things. One was the amount of mass in the planet and the sun. The other was how far apart they were. Newton was able to find the exact relationship between distance and gravity. He multiplied the mass of one space object by the mass of the other. Then he divided that number by the square of their distance apart. The result was the strength of the gravity force that tied them to each other. Newton proved his idea by measuring how much gravity force would be needed to keep the moon orbiting the Earth. Then he measured the mass of the Earth and the moon, and the distance between them. He found that his measurement of the gravity force produced was not the same as the force needed. But the numbers were close. Newton did not tell anyone about his discovery. He put it aside to work on other ideas. Later, with correct measurements of the size of the Earth, he found that the numbers were exactly the same. Newton spent time studying light and colors. He used a three-sided piece of glass called a prism. He sent a beam of sunlight through the prism. It fell on a white surface. The prism separated the beam of sunlight into the colors of a rainbow. Newton believed that all these colors -- mixed together in light -- produced the color white. He proved this by letting the beam of rainbow-colored light pass through another prism. This changed the colored light back to white light. Newton's study of light led him to learn why faraway objects seen through a telescope do not seem sharp and clear. The curved glass lenses at each end of the telescope acted like prisms. They produced a circle of colored light around an object. This created an unclear picture. Newton invented a new kind of telescope, the reflecting telescope. Today, the world's largest telescopes are of this basic design. A few years later, Newton built a different kind of telescope. It used a curved mirror to make faraway objects seem larger. Light reflected from the surface of the mirror, instead of passing through a curved glass lens. Newton's reflecting telescope produced much clearer pictures than the old kind of telescope. Years later, the British astronomer Edmund Halley visited Newton. He said he wanted Newton's help in finding an answer to a problem no one had been able to solve. The question was this: What is the path of a planet going around the sun? Newton immediately gave Halley the answer: an egg-shaped path called an ellipse. Halley was surprised. He asked for Newton's proof. Newton no longer had the papers from his earlier work. He was able to recreate them, however. He showed them to Halley. He also showed Halley all his other scientific work. Halley said Newton's scientific discoveries were the greatest ever made. He urged Newton to share them with the world. Newton began to write a book that explained what he had done. It was published in sixteen eighty-seven. Newton called his book “The Mathematical Principles of Natural Philosophy.” The book is considered the greatest scientific work ever written. In his book, Newton explains the three natural laws of motion. The first law is that an object not moving remains still. And one that is moving continues to move at an unchanging speed, so long as no outside force influences it. Objects in space continue to move, because nothing exists in space to stop them. Newton's second law of motion describes force. It says force equals the mass of an object, multiplied by the change in speed it produces in an object. His third law says that for every action, there is an equal and opposite reaction. From these three laws, Newton was able to show how the universe worked. He proved it with easily understood mathematics. Scientists everywhere accepted Newton's ideas. The leading English poet of Newton's time, Alexander Pope, honored the scientist with these words: "Nature and nature's laws lay hid in night. God said, -'Let Newton be!' - and all was light. " Текст 2. «Science and Technology» 11 October 2011 Will Physicists Have to Rewrite the Special Theory of Relativity? This week, we hear about developments in physics that, if proven correct, could have scientists rewriting physics textbooks. Scientists in Switzerland say they have measured a kind of subatomic particle traveling faster than the speed of light. Physics and the special theory of relativity say that is impossible. FAITH LAPIDUS: Scientists at the CERN physics laboratory in Geneva, Switzerland, made news last month. They said they measured a subatomic particle, called a neutrino, traveling faster than the speed of light. If this is correct, it violates a main idea of Albert Einstein’s special theory of relativity. Patrick Fox works at the Fermi National Accelerator Laboratory, or Fermilab, near Chicago, Illinois. He knows a lot about the theory of relativity. PATRICK FOX: “I have been studying that for years. It is something you use day-to-day.” FAITH LAPIDUS: Patrick Fox explains the reason there is a speed limit for all matter in the universe. PATRICK FOX: “The only objects that can travel at the speed of light are mass-less things, like light.” FAITH LAPIDUS: Robert Plunkett is a scientist with the Minos Neutrino Experiment at Fermilab. He says even subatomic particles like neutrinos have a speed limit. Part of the Minos experiment at Fermilab. ROBERT PLUNKETT: “The speed of light is the absolute cosmic speed limit for the travel of particles.” FAITH LAPIDUS: But scientists at CERN say they have recorded a neutrino particle that broke the cosmic speed limit. They carried out an experiment that fired a beam of neutrinos from CERN to Italy’s INFN Gran Sasso Laboratory. The researchers said they observed about fifteen thousand neutrino events. And they said their observations appear to show that the neutrinos traveled faster than light. Light travels at about three hundred thousand kilometers a second. If this is true, the scientists will have to rethink the laws governing mass and motion. But Robert Plunkett thinks more work is needed. ROBERT PLUNKETT: “Skepticism is something we always bring to the table anytime there is a revolutionary claim like this.” FAITH LAPIDUS: Patrick Fox notes that other researchers have yet to confirm the results. PATRICK FOX: “Before we throw away a cherished principle we have to, of course, check that this result, which is a very interesting result, is confirmed by other sources.” FAITH LAPIDUS: The MINOS experiment at Fermilab will perform similar experiments to the one at CERN. They also will measure the speed of neutrinos. Robert Plunkett says the MINOS experiment, with an upgrade, can provide a more exact measurement. ROBERT PLUNKETT: “Our plans are to upgrade this equipment using a system of atomic clocks, much like what they had in the European experiment, to in fact do a measurement that is more precise than theirs, in many ways.” FAITH LAPIDUS: The MINOS experiment may also measures neutrinos traveling faster than the speed of light. If that happens, scientists like Patrick Fox may have to rebuild the laws of physics from the ground up. Темы для докладов и рефератов 1. Научно-исследовательская работа в области физики в Кемеровском государственном университете. 2. Ведущие научно-исследовательские центры Сибири (различных направлений физики). 3. Ведущие научно-исследовательские центры России (различных направлений физики). 4. Ведущие научно-исследовательские центры мира (различных направлений физики). 5. Оформление необходимых документов на участие в зарубежных грантовых программах. 6. Оформление необходимых документов для учебы, стажировки за границей. 7. Современные отечественные достижения в области физики. 8. Современные достижения зарубежных ученых-физиков. 9. Научные зарубежные интернет-ресурсы для физиков (по конференциям, грантовым программам). 10. Большой адронный коллайдер. 11. Великие физики мира (от древности до наших дней). 12. Великие отечественные физики. 13. История развития физики как науки. 14. Физика на службе промышленности. 15. Физика в жизни и в быту человека. 16. Атомная энергия. 17. Развитие новых технологий и защита окружающей среды. 7. Учебно-методическое и информационное обеспечение дисциплины (модуля) Список основной учебной литературы Учебный комплекс не содержит нормативного учебника. Достижение цели обучения обеспечивается совокупностью аспектных пособий, специальных текстов и научных статей из периодических изданий, курсов, компьютерных программ. По вопросам перевода в университетской библиотеке: аудио и видео 1. Федянина, Л.И. Прагматические аспекты перевода. Учебное пособие – Кемерово, 2010. Список дополнительной учебной литературы 1. Крушельницкая К.Г., Попов М.Н. Советы переводчику: Уч. пособие. – 2-е изд., доп. – М.: ООО «Изд-во Астрель»; ООО «Изд-во АСТ», 2002. 2. Фёдоров А.В. Основы общей теории перевода (лингвистические проблемы): Уч. пособие. – 4-е изд., перераб. и доп. – М.: Высшая школа, 1983. Программное обеспечение и интернет-ресурсы 1. voaspecialenglish.com разделы: News; Science and Technology 2. http://www.lib.kemsu.ru/res/ 3. Электронные журналы Американского физического общества (ASP) 4. Physical Review A 5. Physical Review B 6. Physical Review C 7. Physical Review D 8. Physical Review E 9. Physical Review Letters 10. Reviews of Modern Physics 11. Physical Review Online Archives 12. http://de.wikipedia.org 13. http://www.ABBYY.ru 14. http://www.lingvo.ru 15. www.physnews.com 16. www.physorg.com 17. www.physics.org 18. www.physicstoday.org 19. physicsworld.com 20. www.livephysics.com 21. www.physlink.com 22. physics.newsonly.org 23. www.particlephysics.ac.uk 24. http://ajp.aapt.org/ 25. http://www.nrcresearchpress.com/journal/cjp 26. https://www.cap.ca/ 27. epljournal.org 28. http://fizika.hfd.hr 29. http://physicsweb.org/ 30. http://physicsbuzz.physicscentral.com/ 31. http://www.aip.org/pnu/ 32. http://www.aapps.org 33. http://www.intlpress.com/ATMP/ 34. http://www.europhysicsnews.org/ 35. http://www-bd.fnal.gov/icfabd/news.html 36. http://www.slac.stanford.edu/pubs/icfa/ 37. http://www.cirs-tm.org/media-eng.php?matiere=physics 38. http://asadl.org/arlo/ 39. http://www.atmos-chem-phys.net/volumes_and_issues.html 40. http://chaos.aip.org/ 41. http://www.ejtp.com/ 42. http://e-lc.org/ 43. http://iopscience.iop.org/ 8. Материально-техническое обеспечение дисциплины (модуля) В качестве материально-технического обеспечения дисциплины используются мультимедийные средства: стационарные и переносные компьютеры, цифровые проекторы, интерактивные доски; различные типы словарей английского языка (толковые, этимологические, синонимические и др.); аудио-, видеозаписи на английском языке; аутентичные тексты и текстовые задания на CD. Программа составлена в соответствии с требованиями ФГОС ВПО с учетом рекомендаций и ПрООП ВПО по направлению подготовки 011200 ФИЗИКА (магистратура). Авторы – д.ф.н., профессор кафедры английской филологии № 1 Каменева В.А. к.ф.н, доцент кафедры немецкой филологии Р.Д. Керимов к.ф.н, доцент кафедры немецкой филологии Л.И. Федянина Рецензент – д.ф.н., профессор Рябова М.Ю. Рабочая программа дисциплины обсуждена на заседании кафедры Протокол № 1 от 30 » Августа 201 1 г. « зав. кафедрой ________________________ Рябова М.Ю. (подпись) Одобрено методической комиссией физического факультета Протокол от № « » 201 1 г. Председатель ________________________ Золотарев М.Л. (подпись) II. Методические указания для преподавателей: При подготовке к занятиям по дисциплине «Инностранный язык в сфере профессиональной коммуникации» преподавателю следует учитывать возможность использования современных технических средств презентации учебной информации в специально оборудованных аудиториях. К таким средствам относятся: современные цифровые проекторы, электронные интерактивные доски, компьютеры (стационарные и переносные), а также СD проигрыватели. Использование представленного технического оборудования в процессе преподавания данной дисциплины не является дополнительным средством, которое позволяет намного эффективнее и быстрее магистрам осваивать учебный материал по дисциплине, а составляет неотъемлемую и обязательную часть данного курса. Это обусловлено в первую очередь спецификой самого предмета «Иностранный язык в сфере профессиональной коммуникации» как дисциплины, при освоении которой идет интеграция знания иностранного языка с уже сформированными профессиональными навыками физиков-магистров к данному этапу обучения для повышения своих общекультурных и профессиональных компетенций. В связи с этим, следует обратить внимание на методическое обеспечение учебной дисциплины, а именно, на указанный в рабочей программе раздел с интернет-источниками, где в свободном доступе есть все необходимые материалы по запланированным темам. Все эти материалы может использовать как преподаватель, так и магистр. Иными словами, рекомендуется стимулировать магистров пользоваться дополнительной литературой и интернет-источниками как для успешного освоения дисциплины, так и для расширения кругозора. С учетом технической обеспеченностью аудиторий вуза, следует отметить возможность использования преподавателем и магистрами при освоении данной дисциплины таких средств программного обеспечения, как программного пакета Microsoft Office, Microsoft PowerPoint и т.д. Что, безусловно, позволит преподавателям передать большее количество информации студентам за меньший объем времени, улучшит восприятие учебного материала. Использование данного программного обеспечения студентами при подготовке проектных работ позволит им успешнее справиться с поставленными задачами и предложенными проектными заданиями (список тем для докладов и презентаций приведен выше в I. рабочей программе). В данный УМК включены тексты статей, которые предлагаются студентам для перевода. Рекомендуется обновлять или дополнять их каждый год, поскольку это позволит: - во-первых, избежать ситуаций, когда студенты последующих годов обучения «заимствуют» переводы, приготовленные студентами, которые обучались ранее; - во-вторых, одна из важных задач данного материала заключается в ознакомлении магистров с новейшими разработками в физике в различных странах, с актуальными научными направлениями. Это является необходимой составляющей данной дисциплины и позволяет магистрам вуза, где преподается эта дисциплина, планировать или корректировать свою научную и профессиональную деятельность с учетом этой важной информации. При организации самостоятельной работы студентов по освоению специализированной терминологии дисциплины также рекомендуется знакомить их с полным списком терминов на первом занятии, чтобы дать студентам возможность распределить изучение лексики по частям. Следовательно, и контроль за ее освоению станет более удобным как для магистров, так и для самого преподавателя. III. Методические рекомендации для студентов Для освоения дисциплины магистру необходимо посещать все занятия, поскольку некоторые формы работы, такие как дискуссии по проблемам изучаемой дисциплины, магистру будет тяжело осваивать или совершенствовать самостоятельно вне аудиторный занятий. Также от магистра требуется подготовка и выполнение всех проектных заданий (например, по переводу специализированных текстов) и самостоятельной работы по изучению дополнительного теоретического материала. Например, подготовка презентации на иностранном языке своего научного проекта, информации по ведущим научным центрам России и мира. Для освоения дисциплины магистру требуется предварительно изучить в качестве фундамента дисциплину «Иностранный язык», так как все виды работы в рамках данного курса выполняются на иностранном языке. Кроме этого, необходимо постоянное самостоятельное совершенствование навыков устной и письменной речи на иностранном языке. Для этого необходимо читать и слушать больше материалов на иностранном языке, указанных в разделе по Интернет-ресурсам для данной дисциплины. Если уровень языковой подготовки недостаточно высок, то рекомендуется не пропускать занятий по данной дисциплине, чтобы постепенно, в течение отведенного времени усовершенствовать навыки устной и письменной речи на иностранном языке и быть в состоянии выполнять задачи данного курса по совершенствованию общекультурных и профессиональных компетенций. Магистрам следует в начале курса обучения ознакомиться с тем, какими навыками, знаниями и умениями после ее прохождения они должны владеть, так как это позволит скоординировать свою аудиторную и самостоятельную работу и вовремя получить необходимую помощь преподавателя по корректировке своих слабых сторон. Поскольку в рамках данной дисциплины магистры работают с иноязычными материалами, содержащими большое количество терминов, относящихся к разным областям физики, необходимо заранее, после первого занятия, взять глоссарий в электронном виде из раздела VI УМК к данной дисциплине. Начинать работать по освоению терминов на иностранном языке необходимо с первых занятий, что позволит распределить свои усилия по выполнению заданий для самостоятельной работы и оптимизировать процесс обучения. IV. Учебно-методические материалы: Подборка современных неадаптированных текстов статей по физике по новейшим открытиям в мире. Текст 1. http://www.insidescience.org/research/1-2376 In the Quantum World, Diamonds Can Communicate With Each Other Oxford physicists using bizarre principle of "entanglement" to cause a change in a diamond they do not touch. Dec 1, 2011 By Joel N. Shurkin, ISNS Contributor The vibrational states of two spatially separated, millimeter-sized diamonds are entangled at room temperature by scattering a pair of strong pump pulses (green). The generated motional entanglement is verified by observing nonclassical correlations in the inelastically scattered light. (ISNS) -- Researchers working at the Clarendon Laboratory at the University of Oxford in England have managed to get one small diamond to communicate with another small diamond utilizing "quantum entanglement," one of the more mind-blowing features of quantum physics. Entanglement has been proven before but what makes the Oxford experiment unique is that concept was demonstrated with substantial solid objects at room temperature. Previous entanglements of matter involved submicroscopic particles, often at cold temperatures. This experiment employed millimeter-scale diamonds, "not individual atoms, not gaseous clouds," said Ian Walmsley, professor of experimental physics at Oxford's Clarendon Laboratory, one of the international team of researchers. The experiment is reported in this week's edition of Science. When zapping one artificial diamond with ultrashort laser pulses they managed to change the vibrations of a second diamond sitting a half a foot away without touching it. Entanglement originated in the mind of Albert Einstein, who ironically came up with the notion trying to disprove quantum mechanics, a branch of physics he mistrusted all his life. Under the theory, if two particles, say electrons, are created together, some of their attributes will become "entangled." If the two are then separated, doing something to one instantly affects the other. This would happen whether they were next to each other or across the universe. For instance, electrons act as if they have tiny bar magnets that point up or down, described by an attribute called "spin." If the two electrons are entangled through their spins -- up or down -- and a scientist measures the spin of one, the spin of the other will react even if one is on a lab table in Oxford and the other were on a planet near the star Antares, 1,000 light years away. Instantly. This would mean that the information about the change traveled faster than the speed of light -- which Einstein said was impossible -- or that long distances are some kind of illusion. Einstein disparaged it as "spooky action at a distance." The German physicist Erwin Schrodinger used the term "entanglement" in a letter to Einstein. He didn't believe in quantum mechanics either. "I think I can safely say no one understands quantum mechanics," the late physicist Richard Feynman once famously explained. Nonetheless, quantum mechanics is now the paradigm for nature at the atomic level. It serves as the foundation of much of modern technology, from lasers to transistors. And entanglement comes as part of the package. Physicists have been demonstrating it in laboratories since the 1980s, and it is being used in laboratories experimenting with the building blocks of quantum computers. The diamonds Walmsley and his international team used were approximately 3 millimeters (a tenth of an inch) square and 1 millimeter thick. "We used short pulse lasers with pulse durations of around 100 femtoseconds (a quadrillionth of a second). A femtosecond is to a second as a nickel is to the debt of the federal government generally speaking," he said. They chose diamonds because they are crystals, so it was easier to measure molecular vibrations, and because they are transparent in visible wavelengths. Light from the lasers altered a kind of mass vibration in the diamond crystal called phonons, and the measurements showed they were entangled: The vibrations of the second diamond reacted to what happened to the vibrations of the first. Performing the experiment with ultrafast laser pulses enabled the researchers to catch entanglement, which is usually very short-lived in large objects at room temperature. "It remains a counterintuitive way of thinking about objects," Walmsley admitted. "It's a very nice and clever piece of work with potentially big implications," said Sidney Perkowitz, a physicist at Emory University in Atlanta, and author of "Slow Light: Invisibility, Teleportation and Other Mysteries of Light," a book partially about entanglement. The macroscopic size, and the fact that this was done at room temperature, would be important steps toward a practical quantum technology for telecommunications and computing, and toward deeper understanding of how the quantum world and the human-scale world are related." Joel Shurkin is a freelance writer based in Baltimore. He is the author of nine books on science and the history of science, and has taught science journalism at Stanford University, UC Santa Cruz and the University of Alaska Fairbanks. Текст 2. http://www.abc.net.au/science/articles/2012/01/11/3405712.htm Global warming rate less than feared, Science Online, 06 Dec 2011 Global uncertainty on how to deal with the threats of nuclear weapons and climate change have forced the 'Doomsday clock' one minute closer to midnight. "It is now five minutes to midnight," says Dr Allison Macfarlane, chair of the Bulletin of Atomic Scientists , which created the Doomsday clock in 1947 as a barometer of how close the world is to an apocalyptic end. The last decision by the group, which includes a host of Nobel Prize winning scientists, moved the clock a minute further away from midnight in 2010 on hopes of global nuclear cooperation and the election of President Barack Obama. However, today's decision pushes the clock back to the time where it was in 2007. "It is clear that the change that appeared to be happening at the time is not happening, not materialising," says co-chair Dr Lawrence Krauss. "And faced today with the clear and present dangers of nuclear proliferation, climate change and the continued challenge to find new and sustainable and safe sources of energy, business as usual reigns the norm among world leaders." The clock reached its most perilous point in 1953, at two minutes to midnight, after the United States and the Soviet Union tested thermonuclear devices within nine months of one another. It was a far-flung 17 minutes to midnight in 1991 after the two signed the long-stalled Strategic Arms Reduction Treaty (START) and announced further unilateral cuts in tactical and strategic nuclear weapons. Increasing nuclear tensions, refusal to engage in global action on climate change, and a growing tendency to reject science when it comes to major world concerns, were cited as key reasons for the latest tick on the clock. The nuclear accident at Japan's Fukushima plant also highlighted the volatility of relying on nuclear power in areas prone to natural disasters, scientists said. Rejection of science Professor Robert Socolow, a member of the BAS science and security board and professor of mechanical and aerospace engineering at Princeton University, says a common theme emerged in the scientists' talks this year. He cited a "worrisome trend, notably in the United States but in many other countries, to reject or diminish the significance of what science says is the characteristic of a problem." "The world is in a pickle. Many people want to live better than they live now on a planet of finite size," he added. The group says it was heartened by a series of world protest movements, including the Arab spring, the global Occupy demonstrations and protests in Russia which show people are seeking a greater say in their future. However, there is plenty of uncertainty in the nuclear realm, and even a renewed START deal between Russia and the United States has not achieved the progress scientists would like, says BAS board member Professor Jayantha Dhanapala. "At a time when there are going to be elections in the United States, in Russia, in France, and a change of leadership in China, there is some uncertainty therefore about the nuclear weapons programs of these countries and the policies that the new leadership will follow," says Dhanapala, a former UN under-secretary general for disarmament affairs. "The world still has approximately over 20,000 deployed nuclear weapons with enough power to destroy the world's inhabitants several times over," he adds. "We also have the prospect of nuclear weapons being used by terrorists and non-state actors and therefore the problem of nuclear weapon use either by accident or by design.... remains a very serious problem." Worrying reliance on fossil fuels Executive director of the group, Dr Kennette Benedict, highlighted the dangers of a continued world reliance on fossil fuels, noting that power plants built in this decade will spew pollution for the next 50 years. "The global community may be near a point of no return in efforts to prevent catastrophe from changes in the Earth's climate," she said. "The actions taken in the next few years will set us on a path that will be extremely difficult to redirect." Krauss adds that the Fukushima nuclear disaster in Japan has reminded scientists of the risks of trading one form of energy for another in a risky environment. "With damage to a nuclear reactor in Japan, the complex issue of the relationship between nuclear reactors, nuclear weapons and sustainable energy production without global warming has become even more complex." Текст 3. http://www.physorg.com/news/2012-01-nanoscale-biologicalcoating.html Nanoscale biological coating is a new way to stop the bleeding January 10, 2012 by Anne Trafton MIT researchers have developed a coating of thrombin, shown here, and tannic acid. After being sprayed onto a surface, the material can halt bleeding within seconds. Image: Wikimedia/Nevit Dilmen MIT engineers have developed a nanoscale biological coating that can halt bleeding nearly instantaneously, an advance that could dramatically improve survival rates for soldiers injured in battle. The researchers, led by Paula Hammond and funded by MIT’s Institute of Soldier Nanotechnologies and a Denmark-based company, Ferrosan Medical Devices A/S, created a spray coating that includes thrombin, a clotting agent found in blood. Sponges coated with this material can be stored stably and easily carried by soldiers or medical personnel. The sponges could also prove valuable in civilian hospitals, says Hammond, the David H. Koch Professor in Engineering. “The ability to easily package the blood-clotting agent in this sponge system is very appealing because you can pack them, store them and then pull them out rapidly,” she says. Hammond and her colleagues described the technology in the Dec. 27 online edition of Advanced Materials. Lead author of the paper is Anita Shukla PhD ’11, who is now a postdoc at Rice University. Uncontrolled bleeding is the leading cause of trauma death on the battlefield. Traditional methods to halt bleeding, such as tourniquets, are not suitable for the neck and many other parts of the body. In recent years, researchers have tried alternative approaches, all of which have some disadvantages. Fibrin dressings and glues have a short shelf life and can cause an adverse immune response, and zeolite powders are difficult to apply under windy conditions and can cause severe burns. Another option is bandages made of chitosan, a derivative of the primary structural material of shellfish exoskeletons. Those bandages have had some success but can be difficult to mold to fit complex wounds. Many civilian hospitals use a highly absorbent gelatin sponge produced by Ferrosan to stop bleeding. However, those sponges need to be soaked in liquid thrombin just before application to the wound, making them impractical for battlefield use. Hammond’s team came up with the idea to coat the sponges with a blood-clotting agent in advance, so they would be ready when needed, for either military or civilian use. To do that, the researchers developed a nanoscale biological coating that consists of two alternating layers sprayed onto a material, such as the sponges used in this study. The researchers discovered that layers of thrombin, a natural clotting protein, and tannic acid, a small molecule found naturally in tea, yield a film containing large amounts of functional thrombin. Both materials are already approved by the U.S. Food and Drug Administration, which could help with the approval process for a commercialized version of the sponges, Shukla says. Micro / nanomanipulators - Flexible and integrated solutions for TEM / SEM sample preparation - www.imina.ch A key advantage of the spray method is that it allows a large amount of thrombin to be packed into the sponges, coating even the interior fibers, says David King, a trauma surgeon and instructor in surgery at Massachusetts General Hospital who was not involved in this research. “All of the existing hemostatic materials suffer from the same limitation, which is being able to deliver a dense enough package of hemostatic material to the bleeding site. That’s why this new material is exciting,” says King, also an Army reservist who has served in Afghanistan as chief of trauma surgery. Once sprayed, the sponges can be stored for months before use. The sponges can also be molded to fit the shape of any wound. “Now we have an alternative that could be used without applying a large amount of pressure and can conform to a variety of wounds, because the sponges are so malleable,” Shukla says. In tests with animals at Ferrosan, the coated sponges were applied to wounds, with light pressure (from a human thumb), for 60 seconds — and stopped the bleeding within that time. Sponges lacking thrombin required at least 150 seconds to stop the bleeding. A simple gauze patch, applied for 12 minutes (the length of the experiment), did not stop the bleeding. The researchers have filed a patent application on this technology and on similar sponges coated with the antibiotic vancomycin. Hammond’s lab is now working on combining the blood-clotting and antibiotic activities in a single sponge. Provided by Massachusetts Institute of Technology (news : web) This story is republished courtesy of MIT News (http://web.mit.edu/newsoffice/), a popular site that covers news about MIT research, innovation and teaching. Текст. 4. http://www.physorg.com/news/2012-01-nanoscale-metallicferroelectrics.html Experiments prove nanoscale metallic conductivity in ferroelectrics January 9, 2012 ORNL researchers used piezoresponse force microscopy to demonstrate the first evidence of metallic conductivity in ferroelectric nanodomains. The prospect of electronics at the nanoscale may be even more promising with the first observation of metallic conductance in ferroelectric nanodomains by researchers at Oak Ridge National Laboratory. Ferroelectric materials, which switch their polarization with the application of an electric field, have long been used in devices such as ultrasound machines and sensors. Now, discoveries about ferroelectrics' electronic properties are opening up possibilities of applications in nanoscale electronics and information storage. In a paper published in the American Chemical Society's Nano Letters, the ORNL-led team demonstrated metallic conductivity in a ferroelectric film that otherwise acts as an insulator. This phenomenon of an insulator-metal transition was predicted more than 40 years ago by theorists but has eluded experimental proof until now. "This finding unambiguously identifies a new conduction channel that percolates through the insulating matrix of the ferroelectric, which opens potentially exciting possibilities to 'write' and 'erase' circuitry with nanoscale dimensions," said lead author Peter Maksymovych of ORNL's Center for Nanophase Materials Sciences. From an applied perspective, the ability to use only an electric field as a knob that tunes both the magnitude of metallic conductivity in a ferroelectric and the type of charge carriers is particularly intriguing. Doing the latter in a semiconductor would require a change of the material composition. "Not only can we turn on metallic conductivity, but if you keep changing the bias dials, you can control the behavior very precisely," Maksymovych said. "And the smaller the nanodomain, the better it conducts. All this occurs in the exact same position of the material, and we can go from an insulator to a better metal or a worse metal in a heartbeat or faster. This is potentially attractive for applications, and it also leads to interesting fundamental questions about the exact mechanism of metallic conductivity." Although the researchers focused their study on a well-known ferroelectric film called lead-zirconate titanate, they expect their observations will hold true for a broader array of ferroelectric materials. "We also anticipate that extending our studies onto multiferroics, mixedphase and anti-ferroelectrics will reveal a whole family of previously unknown electronic properties, breaking new ground in fundamentals and applications alike," said co-author and ORNL senior scientist Sergei Kalinin. More information: The full paper, "Tunable Metallic Conductance in Ferroelectric Nanodomains," is available at http://pubs.acs.or … 21/nl203349b Provided by Oak Ridge National Laboratory (news : web) Текст 5. http://www.physorg.com/news/2012-01-scientists-mystery- armchair-nanotubes.html Armchair-enriched batches of nanotubes show their colors in an array of varying types. The vial at left is a mix of nanotubes straight from the furnace, suspended in liquid. The vials at right show nanotubes after separation through ultracentrifugation. Excitons absorb light in particular frequencies that depend on the diameter of the tube; the mix of colors not absorbed are what the eye sees. (PhysOrg.com) -- Rice University researchers have figured out what gives armchair nanotubes their unique bright colors: hydrogen-like objects called excitons. Their findings appear in the online edition of the Journal of the American Chemical Society. Armchair carbon nanotubes – so named for the "U"-shaped configuration of the atoms at their uncapped tips – are one-dimensional metals and have no band gap. This means electrons flow from one end to the other with little resistivity, the very property that may someday make armchair quantum wires possible. The Rice researchers show armchair nanotubes absorb light like semiconductors. An electron is promoted from an immobile state to a conducting state by absorbing photons and leaving behind a positively charged "hole," said Rice physicist Junichiro Kono. The new electron-hole pair forms an exciton, which has a neutral charge. "The excitons are created by the absorption of a particular wavelength of light," said graduate student and lead author Erik Hároz. "What your eye sees is the light that's left over; the nanotubes take a portion of the visible spectrum out." The diameter of the nanotube determines which parts of the visible spectrum are absorbed; this absorption accounts for the rainbow of colors seen among different batches of nanotubes. Scientists have realized that gold and silver nanoparticles could be manipulated to reflect brilliant hues – a property that let artisans who had no notions of "nano" create stained glass windows for medieval cathedrals. Depending on their size, the particles absorbed and emitted light of particular colors due to a phenomenon known as plasma resonance. In more recent times, researchers noticed semiconducting nanoparticles, also known as quantum dots, show colors determined by their size-dependent band gaps. But plasma resonance happens at wavelengths outside the visible spectrum in metallic carbon nanotubes. And armchair nanotubes don't have band gaps. Kono's lab ultimately determined that excitons are the source of color in batches of pure armchair nanotubes suspended in solution. The results seem counterintuitive, Kono said, because excitons are characteristic of semiconductors, not metals. Kono is a professor of electrical and computer engineering and of physics and astronomy. While armchair nanotubes don't have band gaps, they do have a unique electronic structure that favors particular wavelengths for light absorption, he said. "In armchair nanotubes, the conduction and valence bands touch each other," Kono said. "The one-dimensionality, combined with its unique energy dispersion, makes it a metal. But the bands develop what's called a van Hove singularity," which appears as a peak in the density of states in a one-dimensional solid. "So there are lots of electronic states concentrated around this singularity." Exciton resonance tends to occur around these singularities when hit with light, and the stronger the resonance, the more distinguished the color. "It's an unusual quality of these particular one-dimensional materials that these excitons can actually exist," Hároz said. "In most metals, that's not possible; there's not enough Coulomb interaction between the electron and the hole for an exciton to be stable." The new paper follows on the heels of work by Kono and his team to create batches of pure single-walled carbon nanotubes through ultracentrifugation. In that process, nanotubes were spun in a mix of solutions with different densities up to 250,000 times the force of gravity. The tubes naturally gravitated toward separated solutions that matched their own densities to create a colorful "nano parfait." As a byproduct of their current work, the researchers proved their ability to produce purified armchair nanotubes from a variety of synthesis techniques. They now hope to extend their investigation of the optical properties of armchairs beyond visible light. "Ultimately, we'd like to make one collective spectrum that includes frequency ranges all the way from ultraviolet to terahertz," Hároz said. "From that, we can know, optically, almost everything about these nanotubes." More information: Read the abstract at http://pubs.acs.or … 21/ja209333m Provided by Rice University (news : web) Текст 6. http://www.physorg.com/news/2012-01-narrowest-wiressilicon-current-capability.html Narrowest conducting wires in silicon ever made show the same current capability as copper January 5, 2012 The narrowest conducting wires in silicon ever made – just four atoms wide and one atom tall – have been shown to have the same electrical current carrying capability of copper, according to a new study published today in the journal Science. Despite their astonishingly tiny diameter – 10,000 times thinner than a human hair – these wires have exceptionally good electrical properties, raising hopes they will serve to connect atomic-scale components in the quantum computers of tomorrow. "Interconnecting wiring of this scale will be vital for the development of future atomic-scale electronic circuits," says the lead author of the study, Bent Weber, a PhD student in the ARC Centre of Excellence for Quantum Computation and Communication Technology at the University of New South Wales, in Sydney, Australia. The researchers discovered that the electrical resistivity of their wires – a measure of the ease with which electrical current can flow – does not depend on the wire width. Their behaviour is described by Ohm's law, which is a fundamental law of physics taught to every high school student. "It is extraordinary to show that such a basic law still holds even when constructing a wire from the fundamental building blocks of nature – atoms," says Weber. The discovery demonstrates that electrical interconnects in silicon can shrink to atomic dimensions without loss of functionality, says the Centre's Director and leader of the research, Professor Michelle Simmons. Wires just one atom tall have been created by inserting a string of phosphorus atoms in a silicon crystal by a team of researchers from the University of New South Wales, Melbourne University and Purdue University. This image from a computational simulation run of the wires shows electron density as electrons flow from left to right. The wires are 20 times smaller than the smallest wires now available and measure just four atoms wide by one phosphorus atom tall. Credit: Purdue University /Sunhee Lee, Hoon Ryu and Gerhard Klimeck "Driven by the semiconductor industry, computer chip components continuously shrink in size allowing ever smaller and more powerful computers," Simmons says. "Over the past 50 years this paradigm has established the microelectronics industry as one of the key drivers for global economic growth. A major focus of the Centre of Excellence at UNSW is to push this technology to the next level to develop a silicon-based quantum computer, where single atoms serve as the individual units of computation," she says. "It will come down to the wire. We are on the threshold of making transistors out of individual atoms. But to build a practical quantum computer we have recognised that the interconnecting wiring and circuitry also needs to shrink to the atomic scale." Creating such tiny components has been made possible using a technique called scanning tunnelling microscopy. "This technique not only allows us to image individual atoms but also to manipulate them and place them in position," says Weber. More information: "Ohm's Law Survives to the Atomic Scale," by B. Weber, et al. Science (2012). Provided by University of New South Wales (news : web) Ads by Google Подборка примеров (образцов) по докладам о различных научных центрах. Образец № 1. SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory is home to a two-mile linear accelerator—the longest in the world. Originally a particle physics research center, SLAC is now a multipurpose laboratory for astrophysics, photon science, accelerator and particle physics research. Six scientists have been awarded the Nobel Prize for work carried out at SLAC and the future of the laboratory promises to be just as extraordinary. The laboratory seeks to be a leader in exploring frontier questions of science that are important to the nation. SLAC Mission Statement SLAC programs explore the ultimate structure and dynamics of matter and the properties of energy, space and time - at the smallest and largest scales, in the fastest processes and at the highest energies - through robust scientific programs, excellent accelerator based user facilities and valuable partnerships. SLAC Core Competencies The foundational core competencies underpinning activities at SLAC are: Electron-based accelerator research and technology Advanced instrumentation, diagnostics and systems integration Theory and innovative techniques for data analysis, modeling, and simulation in Photon Science, Particle Physics and Particle Astrophysics Management of ultra-large data sets for users and collaborations distributed worldwide SLAC is truly a multi-purpose laboratory. Established in 1962 as a particle physics center, the laboratory has expanded over the years to include some of the world's leading photon science and astrophysics institutes. Photon science, the study of matter through its interaction with light, is the most rapidly expanding area of research at SLAC. The laboratory's Photon Science research program includes: LCLS As the world's most powerful X-ray laser, the Linac Coherent Light Source creates unique light that can resolve detail the size of atoms and see processes that occur in less than one tenth of a trillionth of a second. At these unprecedented speeds and scales, the LCLS has embarked on groundbreaking research in physics, structural biology, energy science, chemistry and a host of other fields. PULSE A joint venture with Stanford University, the Photon Ultrafast Laser Science and Engineering institute focuses on ultrafast structural and electronic dynamics in atomic physics, chemistry, biology and physics, pushing the frontiers of LCLS performance. SIMES The Stanford Institute for Materials and Energy Science addresses key challenges in the areas of condensed matter physics and materials science, elucidating the electronic and atomistic structure, collective behavior and dynamics of materials and their interfaces. This understanding is the basis for new clean and economical energy with reduced environmental impacts and other technologies important to our society. SSRL The Stanford Synchrotron Radiation Lightsource creates synchrotron X-ray light by bending the path of electrons traveling the speed of light around a storage ring. The extremely bright X-rays can be used to view the nanoworld, leading to discoveries in fields including solid-state physics, materials science, environmental sciences, structural biology and chemistry. SUNCAT The Center explores challenges associated with the atomic-scale design of catalysts for chemical transformations of interest for energy conversion and storage. By combining experimental and theoretical methods the aim is to develop a quantitative description of chemical processes at the solid-gas and solid-liquid interface. SLAC uses both accelerator and non-accelerator based experiments to probe the nature of the fundamental constituents and forces operating in the Universe. The laboratory's Particle Physics and Astrophysics program includes: ARD The Accelerator Research Division is pursuing novel ways to accelerate particles to higher speeds in shorter distances than has ever before been achieved. Key activities include studies of the ultimate acceleration gradients that can be achieved with radio-frequency structures, and investigations using beam-plasma interactions and laser-dielectric interactions to provide intense accelerating fields. ATLAS SLAC plays an important role in the ATLAS (A Toroidal LHC ApparatuS) experiment on the Large Hadron Collider at CERN, a particle physics laboratory located on the Franco-Swiss border. SLAC serves as a Tier 2 computing center for ATLAS, and has been involved in designing and building the pixel detector and high-level trigger systems for this experiment. BaBar The BaBar experiment seeks to understand the violation of CP (charge parity) symmetry, the fundamental symmetry of nature that may explain why the universe contains more matter than antimatter. BaBar has shown that nature violates this symmetry in various surprising ways, but that it is not enough to explain all of the missing antimatter. BaBar has also led to a vastly increased understanding of how quarks interact with one another, and has the potential to find signs of new physics beyond the Standard Model of particle physics. The SLAC Theoretical Physics Group works on virtually all areas of highenergy physics, from the development of fundamental theories and concepts to detailed tests of these theories at colliders and other experimental facilities. A very close and unique collaboration exists between the experimental and the theoretical efforts at SLAC, providing an exciting and stimulating research environment. EXO The Enriched Xenon Observatory is an underground observatory that will search for something never before seen: a neutrinoless double beta decay, which would prove that neutrinos are their own anti-particles, and provide an unambiguous measurement of neutrino masses. FGST SLAC helped build the newest major space observatory, the Fermi Gammaray Space Telescope. Launched into orbit in June 2008, the telescope studies some of the most energetic processes in the universe, beyond the reach of Earth-bound accelerator facilities. Geant4 The Geant4 collaboration has created an evolving software toolkit for the simulation of particle interactions in complex devices. Geant4 is widely used in high energy physics, space and medicine. The SLAC Geant4 group has a major role in Geant4, leading the work on hadronic physics, visualization and overall software architecture. ILC The International Linear Collider, a proposed new electron-positron particle collider, will allow physicists to explore energy regions well beyond the reach of today's accelerators. At those energies, researchers anticipate significant discoveries that will lead to a radical new understanding of dark matter, extra spatial dimensions and fundamental symmetries in nature. JDEM SLAC is currently working in collaboration with several other institutions on The Joint Dark Energy Mission to explore the properties of dark energy and measure how cosmic expansion has changed over time. KIPAC At the Kavli Institute for Particle Astrophysics and Cosmology, SLAC and Stanford researchers explore the most fascinating and challenging topics in astrophysics and cosmology that have direct relevance to high-energy physics— everything from black holes and neutron stars to dark matter and dark energy. LARP SLAC is currently involved in several accelerator development projects for the Large Hadron Collider through the LHC Accelerator Research Program, a consortium of SLAC, Brookhaven, Fermi and Lawrence Berkeley National Laboratories. LSST SLAC is leading the R & D effort for the 3.2 gigapixel camera planned for the Large Synoptic Survey Telescope, a wide-field, ground-based facility that will take deep images of the entire accessible sky every few nights. LSST will allow us to track the evolution of the universe and provide important clues as to the nature of dark matter and dark energy. Образец № 2. CERN - the European Organization for Nuclear Research CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature. The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions. Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 20 Member States. The convention that established CERN in 1954 clearly laid down the main missions for the Organization. Primarily, the Convention states: “The Organization shall provide for collaboration among European States in nuclear research of a pure scientific and fundamental character (...). The Organization shall have no concern with work for military requirements and the results of its experimental and theoretical work shall be published or otherwise made generally available”. Today it is the contents of the nucleus – the basic building blocks of the Universe – that provide the key to unlock the frontier of fundamental research, but CERN’s main mission remains essentially the same. The Convention also states that CERN shall organize and sponsor international co-operation in research, promoting contacts between scientists and interchange with other laboratories and institutes. This includes dissemination of information, and the provision of advanced training for research workers, which continue to be reflected in the current programmes for technology transfer and education and training at many levels. Research: Seeking and finding answers to questions about the Universe Technology: Advancing the frontiers of technology Collaborating: Bringing nations together through science Education: Training the scientists of tomorrow One dream of CERN’s founders, to achieve European eminence in ‘big’ science, was realised in 1984, when Carlo Rubbia and Simon Van der Meer received the Nobel Prize in physics for “their decisive contributions to the large project which led to the discovery of the field particles W and Z, communicators of the weak interaction.” The project was a magnificently executed scheme to collide protons and antiprotons in the existing Super Proton Synchrotron. The experimental results confirmed the unification of weak and electromagnetic forces, the electroweak theory of the Standard Model. Less than a decade later, Georges Charpak, a CERN physicist since 1959, received the 1992 physics Nobel for “his invention and development of particle detectors, in particular the multiwire proportional chamber, a breakthrough in the technique for exploring the innermost parts of matter.” Charpak’s multiwire proportional chamber, invented in 1968, and his subsequent developments launched the era of fully electronic particle detection. Charpak’s detectors are also used for biological research and could eventually replace photographic recording in applied radio-biology. The increased recording speeds translate into faster scanning and lower body doses in medical diagnostic tools based on radiation or particle beams. Most of the activities at CERN are currently directed towards operating the new Large Hadron Collider (LHC), and the experiments for it. The LHC represents a large-scale, worldwide scientific cooperation project. The LHC tunnel is located 100 metres underground, in the region between the Geneva airport and the nearby Jura mountains. It uses the 27 km circumference circular tunnel previously occupied by LEP which was closed down in November 2000. CERN's existing PS/SPS accelerator complexes will be used to preaccelerate protons which will then be injected into the LHC. Seven experiments (CMS, ATLAS, LHCb, MoEDAL[14] TOTEM, LHCforward and ALICE) will run on the collider; each of them will study particle collisions from a different point of view, and with different technologies. Construction for these experiments required an extraordinary engineering effort. Just as an example, a special crane had to be rented from Belgium in order to lower pieces of the CMS detector into its underground cavern, since each piece weighed nearly 2,000 tons. The first of the approximately 5,000 magnets necessary for construction was lowered down a special shaft at 13:00 GMT on 7 March 2005. This accelerator has begun to generate vast quantities of data, which CERN streams to laboratories around the world for distributed processing (making use of a specialised grid infrastructure, the LHC Computing Grid). In April 2005, a trial successfully streamed 600 MB/s to seven different sites across the world. If all the data generated by the LHC is to be analysed, then scientists must achieve 1,800 MB/s before 2008. The initial particle beams were injected into the LHC August 2008.The first attempt to circulate a beam through the entire LHC was at 8:28 GMT on 10 September 2008, but the system failed because of a faulty magnet connection, and it was stopped for repairs on 19 September 2008. The LHC resumed its operation on Friday the 20 November 2009 by successfully circulating two beams, each with an energy of 3.5 trillion electron volts. The challenge that the engineers then faced was to try to line up the two beams so that they smashed into each other. This is like "firing two needles across the Atlantic and getting them to hit each other" according to the LHC's main engineer Steve Myers, director for accelerators and technology at the Swiss laboratory. At 1200 BST on Tuesday 30 March 2010 the LHC successfully smashed two proton particle beams travelling with 3.5 TeV (trillion electron volts) of energy, resulting in a 7 TeV event. However, this is just the start of a long road toward the expected discovery of the Higgs boson. This is mainly because the amount of data produced is so huge it could take up to 24 months to completely analyse it all. At the end of the 7 TeV experimental period, the LHC will be shut down for maintenance for up to a year, with the main purpose of this shut down being to strengthen the huge magnets inside the accelerator. When it re-opens, it will attempt to create 14 TeV events. Образец № 3. The American Institute of Physics The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit membership corporation created for the purpose of promoting the advancement and diffusion of the knowledge of physics and its application to human welfare. It is the mission of the Institute to serve the sciences of physics and astronomy by serving its Member Societies, individual scientists, students and the general public. As a "society of societies," AIP supports ten Member Societies, who collectively represent a broad cross-section of more than 135,000 scientists, engineers, and educators in the global physical science community. With an extensive catalog of top-cited journals, AIP is one of the world's leading publishers in the physical sciences. AIP pursues innovation in electronic publishing of scholarly journals and offers full-solution publishing services for its Member Societies. AIP publishes 13 journals; two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Through its Physics Resources Center, AIP provides a spectrum of services and programs that encompass education and outreach, science communication, government relations, career services, statistical research, industrial outreach, and the history of physics and other sciences. Member societies: Acoustical Society of America American Association of Physicists in Medicine American Association of Physics Teachers American Astronomical Society American Crystallographic Association American Geophysical Union American Physical Society American Vacuum Society Optical Society Society of Rheology Affiliated societies: American Association for the Advancement of Science, Section on Physics American Chemical Society, Division of Physical Chemistry American Institute of Aeronautics and Astronautics American Meteorological Society American Nuclear Society American Society of Civil Engineers ASM International Astronomical Society of the Pacific Biomedical Engineering Society Council on Undergraduate Research, Physics & Astronomy Division Electrochemical Society Geological Society of America IEEE Nuclear & Plasma Sciences Society International Association of Mathematical Physics International Union of Crystallography International Centre for Diffraction Data Laser Institute of America Materials Research Society Microscopy Society of America National Society of Black Physicists Polymer Processing Society Society for Applied Spectroscopy SPIE Образец № 4. The Solar Physics and Space Plasma Research Centre The Solar Physics and Space Plasma Research Centre (SP²RC) at the University of Sheffield seeks to understand the nature of key plasma processes occurring in the solar interior and the atmosphere of the Sun, from photosphere to corona, with particular attention devoted to the various coupling mechanisms of these apparently distinct regions. A large part of the energy flux released in the solar atmosphere travels into interplanetary space and impacts on the Earth's bow shock, energising the magnetosphere and influencing the composition, energy balance and dynamics of the ionosphere, plamasphere and plasmapause. The generation of energetic events in the convection zone and their propagation through the solar-terrestrial system is investigated by members of SP²RC by using mathematical modelling. The mathematical approach involves rigorous analytical work and the implementation of parallel computing (GRID technology) where results are continuously tested by making and using ground-base(e.g. SST, DSO) and highresolution satellite observations (e.g. SOHO, TRACE, Hinode, SDO). SP²RC's research programme involves projects on Helioseismology, Convection Zone & Tachocline, Oscillations & Dynamics in the Solar Atmosphere, Global Coronal Seismology, Magnetic Reconnection, and Absolute & Convective Instabilties. The main aims of SP²RC are (1) to understand the key important physical processes governing the energy flow from the convective zone to the solar atmosphere and down to the Earth's upper atmosphere using analysis of observational data, and through mathematical and computational modelling. (2) to model the coupling of the various traditionally considered `distinct' regions of the Sun-Earth system (e.g. momentum transport through tachocline; coupling of global solar oscillations to the solar atmosphere; magnetic coupling from photosphere to corona and CMEs; etc.). (3) to develop and update our mathematical and computational models, and our data analysis techniques to achieve the above objectives. (4) to verify observationally our mathematical and numerical modelling. (5) to absorb advances made elsewhere and disseminate the results/knowledge base in order to keep the Group's activities at the forefront of world-wide research. (6) to offer PhD and postdoctoral training of the highest possible quality. (7) to contribute UK's leadership of the high-profile international solar research. Key Achievements: Determination of the nature of coronal global EIT waves & initialisation of the field of global coronal seismology Derivation and solution to the Klein-Gordon-Burgers equation. Establishing the role of magnetic fields in the amplitude and frequency modulations of the solar p-modes. Proving evidence (both observational and modelling) for the direct dynamic effects of photospheric wave leakage (e.g. p-modes) on atmospheric fine-scale structure formation (e.g. spicule formation and coronal wave excitation). Примеры рассказа о своей научной деятельности. Пример № 1. http://www.physics.upenn.edu/people/m.cvetic.html My research interest lies in a variety of problems of elementary particle physics ranging from the study of basic interactions to experimental tests of fundamental theories. My background is in basic theory (effective Lagrangian of superstring and M-theory, supergravity, and general relativity) as well as in phenomenology (implications of extended gauge structures and phenomenological implications of string theories), and I tend to pursue research that bridges the gap between basic theory and the experimental consequences of these theories. My main research contributions have been along the following directions: Constructions of four-dimensional solutions of superstring theory and derivations of their phenomenological implications. The program on physical implications of classes of semi-realistic heterotic string models in the mid/late nineties was one of the very few strong efforts, pursuing the "top-down" approach connecting developments in formal theory with possible phenomenological implications. Recent efforts have focused on open string constructions resulting in first examples of supersymmetric solutions three-family standard-like and grand unified models, as well as first constructions of semi-realistic models with stabilized moduli. These models have an interpretation as M-theory compactified on seven-dimensional manifolds with G2 holonomy, thus probing a new corner of M-theory, that is generating considerable activity in both the physics and mathematics communities. Nonperturbative gravitational physics in fundamental theory. This effort was initiated and led to pioneering work on domain walls and black holes in supergravity and superstring theory. It resulted in the first examples of supersymmetric walls and a subsequent unifying description of such configurations. These solutions have subsequently found a realization within fivedimensional supergravity as gravity trapping solutions. The recent effort focused on the study of such configurations both from the point of view of phenomenological implications as well as from AdS/CFT correspondence. In mid/late nineties a broad program on black holes in string theory resulted in the first examples of supersymmetric black holes in string theory, suitable for the study of black hole microscopics. Subsequent efforts have shed light on properties of general rotating black holes that contributed to dramatic progress in the study of their microscopic properties. Most recent effort involves constructions of general charged spinning black holes in asymptotically anti-de Sitter spaces. In the past few years these efforts have grown in scope and impact and have focused on a comprehensive study of consistent non-linear Kaluza-Klein compactifications of string and M-theory and studies of M-theory dynamics on spaces with special holonomy, such as Spin(7) and G2, making forefront contributions at the interface of differential geometry and formal M-theory. Пример № 2. http://www.indiana.edu/~iubphys/faculty/ortizg.shtml A great challenge of theoretical physics is understanding and modeling interacting quantum many-body systems or quantum fields, and accurately predicting properties and functionalities of matter from the fundamental laws of quantum mechanics. My research work is in condensed matter physics and quantum information science. One of my main interests centers on the physics of strongly coupled systems, which is one of today's most active research areas in condensed matter. These systems happened to be strongly correlated since no obvious small coupling constant exists, and consequently exhibit high sensitivity to small parameter changes. My interest is fueled by the new states of matter such systems can display and the exceptional material properties these phases sometimes exhibit. The physics of high temperature superconducting materials, lanthanide and actinide materials (often referred to as f-electron materials), quantum Hall systems, etc. are cases in point. Indeed, the multiplicity of distinct and novel quantum phases observed experimentally confront us with new paradigms that challenge our understanding of the fundamental principles behind such complex phenomena. For example, whether the mechanism controlling the coexistence and/or competition between magnetism and superconductivity (or Bose-Einstein condensation) has the same physical origin in different classes of materials is still an open question. This complex phenomena exhibited by Nature exceeds our ability to explain them, in part, because of a lack of appropriate mathematical tools to disentangle its mysteries. From the theoretical viewpoint the hurdle is in the presence of nonlinear couplings, non-perturbative phenomena, and a panoply of competing quantum orders. As a result, all possible phases of matter and their transitions cannot (even approximately) be described within Landau's framework and new physics concepts such as topological quantum order emerge. The quest to explore the ultimate limits and principles of quantum physics is out there. Quantum technologies are no longer a theorist's dream. For example, commercial quantum cryptography devices have become available. I am interested in studying foundational, software, and hardware aspects of quantum computation and information. Because of the exciting recent development of new algorithms, such as Shor's factoring and Grover's quantum search, that solve difficult problems on a quantum computer using algorithms that would be impractical on a classical computer, it is easy to overlook the fact that Feynman's original proposal for quantum computers was for the purpose of solving quantum physics problems. Simulation of physical phenomena using quantum devices is one of my areas of research. I am also concerned with topics of potential overlap between my two research disciplines, where feedback from one field may help to resolve significant problems in the other. After all, a quantum computer is a quantum many-body system. What are the concepts from quantum information that one can use to study or predict phenomena in condensed matter physics? Similarly, what concepts can be borrowed from condensed matter to quantify measures of information? These are fundamental open questions. Designing and building a quantum computer or a quantum simulator is a ultimate example of topics that meet the boundaries of both disciplines. Cold atom physics is another. Пример № 3. http://jfi.uchicago.edu/~william/index.html My research interests are in the fields of experimental soft condensed matter and theoretical and experimental "knotted fields". A common theme in my research interests is the strong role played by geometry and advanced optical techniques. "Soft" is used to describe a rich variety of classical many-body systems that have energetics accessible at room temperature and are large enough for their constituents to be imaged, providing an ideal playground for the study of many open questions in equilibrium and non-equilibrium many-body physics. Using colloidal particles, (both spherical and shaped, fluids and foams), we are investigating a variety of problems in ordered and disordered phases. A recent focus has been on the use of curvature as a tool to probe structure in two dimensions. In particular, we recently investigated the structure of twodimensional colloidal crystals frustrated by the Gaussian curvature of the curved oil-water interface they are bound to. We are currently developing techniques to extend these ideas to far from equilibrium processes in curved space. To tie a shoelace into a knot is a relatively simple affair. Tying a knot in a field is a different story, because the whole of space must be filled in a way that matches the knot being tied at the core. The possibility of such localized knottedness in a space-filling field has fascinated physicists and mathematicians ever since Kelvin’s 'vortex atom' hypothesis, in which the atoms of the periodic table were hypothesized to correspond to closed vortex loops of different knot types. Recently I investigated some remarkably intricate and stable topological structures that can exist in light fields whose evolution is governed entirely by the geometric structure of the field. Open questions remain about the rules that govern the topological structure of field lines, the possible states that can be created and especially what happens when topologically nontrivial states are coupled to matter. I am currently interested in exploring such structures in both light and `softer' fields. V. Контрольно-измерительные материалы В рамках программы к данной дисциплине используется традиционная система контроля. Текущий контроль осуществляется в течение семестра в устной и письменной форме в виде устных опросов и проектов. К проектной деятельности относим: - подготовку докладов, рефератов, создание аналитического обзора собранной в Интернете информации; - перевод с английского языка на русский современных текстов по уже широко известным и новейшим достижениям в области физики в международных СМИ. Темы для докладов и рефератов 1.Научно-исследовательская работа в области физики в Кемеровском государственном университете. 2.Ведущие научно-исследовательские центры Сибири (различных центры России (различных направлений физики). 3.Ведущие научно-исследовательские направлений физики). 4.Ведущие научно-исследовательские центры мира (различных направлений физики). 5.Оформление необходимых документов на участие в зарубежных грантовых программах. 6.Оформление необходимых документов для учебы, стажировки за границей. 7.Современные отечественные достижения в области физики. 8.Современные достижения зарубежных ученых-физиков. 9.Научные зарубежные интернет-ресурсы для физиков (по конференциям, грантовым программам). 10.Большой адронный коллайдер. 11.Великие физики мира (от древности до наших дней). 12.Великие отечественные физики. 13.История развития физики как науки. 14.Физика на службе промышленности. 15.Физика в жизни и в быту человека. 16.Атомная энергия. 17.Развитие новых технологий и защита окружающей среды. Примеры текстов, предоставляемых студентам для выполнения перевода с английского на русский язык (полная подборка текстов на перевод приведена в пункте IV Учебно-методические материалы). Промежуточный контроль проводится в виде зачета в первом семестре. Объектом контроля являются: 1) знания глоссария дисциплины (полный список терминов с переводом приведен в разделе VI данного УМК), 2) умения и навыки по синтезу и анализу информации на иностранном языке (проверка по выполнению рефератов, докладов и презентаций на иностранном языке по темам, изучаемым в рамках данной дисциплины). Итоговый контроль проводится в виде экзамена за весь курс обучения иностранному языку в сфере профессиональной коммуникации. Объектом контроля является достижение заданного программой уровня владения общекультурными и профессиональными компетенциями. Содержание экзамена за базовый курс обучения для магистров на дневном отделении 1. Переведите текст на профессиональную тему объемом до 2500 печ. знаков письменно со словарём (с английского языка на русский); время подготовки 45 мин. 2. Передайте (на русском языке) общее содержание текста на профессиональную тему объемом до 1600 печ. знаков без использования словаря; время подготовки 10 мин. 3. Сделайте сообщение на иностранном языке о своей научной работе (время на подготовку не отводится). Примите участие в беседе с преподавателем на профессиональную тему. VI. Словарь терминов и персоналий // Сост. д. х. и. А. А. Аскадский, к. х. н. Т. Л. Ренард, д. х. и. И. М. Паписов, к. х. н. Г. П. Гончару, к. х. н. Т. М. Орлова, Т. В. Казанцева. – 1983 [Режим доступа]: http://marata.narod.ru/literatura/ukazatel_terminov_po_fizike_i_fizikohimii_polimerov ТЕРМИНЫ ПО ФИЗИКЕ И ФИЗИКО-ХИМИИ ПОЛИМЕРОВ МЕХАНИЧЕСКИЕ СВОЙСТВА 1. Аномальная вязкость MECHANICAL PROPERTIES Anomalous viscosity 2. Антипластификация Antiplasticization 3. Восстановление высокоэластическое Rubbery recoil 4. Время запаздывания Retardation time 5. Время релаксации Relaxation time 6. Высокоэластичность вынужденная Forced rubbery elasticity 7. Высокоэластичность (текучих систем) Viscoelasticity (of flowing system) 8. Вязкоупругость Viscoelasticity 9. Деструкция механическая Mechanical degradation 10. Деформация высокоэластическая Rubber-like elastic strain 11. Деформация высокоэластическая равновесная Equilibrium rubber-like strain 12. Зависимость обобщенная Master curve 13. Запаздывание Retardation 14. Индекс расплава Melt index 15. Коэффициент механических потерь или тангенс угла механических потер Mechanical loss factor 16. Кривая термомеханическая 17. Кривая течения Thermomechanical curve Flow curve 18. Метод частотно-температурный Александрова-Лазуркина Alexandrov Lazurkin frequency-temperature superposition method 19. Механохимия Mechanochemistry 20. Модуль внутреннего трения Modulus of internal friction 21. Модуль высокоэластичности Rubber elasticity modulus 22. Модуль накопления Storage modulus 23. Модуль потерь Loss modulus 24. Модуль упругости комплексный Complex elastic modulus 25. Модуль эластичности равновесный Equilibrium rubbery modulus 26. Наполнение Filling 27. α (альфа)-переход α(alpha)-Transition 28. Переход вторичный (релаксационный ) Secondary transition 29. Переход основной релаксационный Primary (main) transition 30. Плато высокоэластическое Rubber-like plateau 31. Поведение вязкоупругое Viscoelastic behavior 32. Податливость комплексная Complex compliance 33. Податливость при ползучести Creep compliance 34. Ползучесть Creep 35. Поправка выходная End correction 36. Последействие упругое Elastic aftereffect 37. Предел вынужденной эластичности Yield point 38. Прочность долговременная условная Long-term strength 39. Разбухание экструдата Swelling 40. Разрушение расплава Melt fracture 41. Распределение времен релаксации 42. Реопексия Rheореху 43. Сегмент механический 44. Серебрение Relaxation time distribution Mechanical segment Crazing 45. Скорость релаксации напряжения Stress relaxation rate 46. Скорость установившейся ползучести Steady creep rate 47. Спектр внутреннего трения Internal friction spectrum 48. Спектр времен запаздывания Retardation spectrum 49. Спектр времен релаксации Relaxation spectrum 50. Спектроскопия полимеров акустическая Acoustical spectroscopy of polymers 51. Стеклование Glass transition 52. Стеклование механическое Mechanical glass transition 53. Стеклование структурное Structural glass transition 54. Степень вытяжки Draw ratio (strain ratio) 55. Тело Бингама Bingham body 56. Тело вязкоупругое Viscoelastic body 57. Тело идеально-упругое Ideal elastic body 58. Тело Кельвин-Фойхта Kelvin-Voight body 50. Тело Максвелла Maxwell body 60. Температура текучести Flow point (temperature) 61. Температура хрупкости Brittleness point (temperature) 62. Теория высокоэластичности кинетическая Kinetic theory of rubberelasticity 63. Теория высокоэластичности статистическая Statistical theory of rubber elasticity 64. Теория вязкоупругости квазилинейная Quasi-linear theory of viscoelasticity 65. Теория вязкоупругости нелинейная Non-linear theory of viscoelasticity 66. Теория вязкоупругости Phenomendlogical theory of viscoelasticity 67. Течение химическое Chemical flow 68. Тиксотропия Thixotropy 69. Упрочнение ориентационное Orientation strengthening 70. Упрочнение релаксационное Relaxation strengthening 71. Утомление Fatigue 72. Фактор сдвига Shift factor 73. Функция памяти (механическая) Hereditary function 74. Шейка Neck 75. Эластичность по отскоку Rebound resilience 76. Энергия активации релаксации кажущаяся (эффективная) Apparent activation energy of relaxation 77. Ядро ползучести Creep memory function 78. Ядро релаксации Relaxation memory function ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА DIELECTRICAL PROPERTIES 79. Время диэлектрической релаксации Dielectric relaxation time 80. Время ядерной спин-решеточной релаксации Spin-lattice relaxation time 81. Дипольный момент повторяющегося звена (эффективный) Effective dipol moment of molecular unit 82. Коэффициент диэлектрических потерь Loss factor 83. Максимум диэлектрических потерь Maximum of dielectric losses 84. Поляризуемость полимера Polymer polaryzability 85. Потери дипольно-радикальные Dipol-radical losses 86. Потери дипольно-сегментальные Dipol - segmental losses 87. Потери диэлектрические Dielectric losses 88. Релаксация диэлектрическая Dielectric relaxation 89. Спектр времен диэлектрической релаксации Dielectric relaxation spectrum 90. Тангенс угла диэлектрических потерьDielectric loss factor 91. Трек (образование следа) Tracking 92. Фактор диэлектрических потерь Loss factor 93. Энергия активации дипольной поляризации Activation energy of dipole 94. Энергия активации диэлектрической поляризации Activation energy of dielectric polarization ОПТИЧЕСКИЕ СВОЙСТВА OPTICAL PROPERTIES 95. Анизотропия сегмента Segmental anisotropy 96. Градиент показателя преломления 97. Двойное лучепреломление Refractive index gradient Birefringence 98. Двойное лучепреломление в потоке Flow birefringence 99. Двойное лучепреломление при деформации Stress birefringence 100, Индикатриса отражения.Indicatrix of reflection 101. Индикатриса рассеяния Indicatrix of diffusion 102. Инкремент показателя преломления Refractive index increment 103. Коэффициент оптической чувствительности по деформацииStrain-optical coefficient 104. Коэффициент оптической чувствительности по напряжению Stress- optical coefficient 105. Полимеры оптически активные Optically active polymers ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА THERMAL-PHYSICAL PROPERTIES 106. Анализ дифференциальный термический Differential thermal analysis 107. Закалка Quenching 108. Морозостойкость Low temperature resistance 109. Отжиг Annealing 110. Пик плавления Melting peak' 111. Температура размягчения по Вика Vicat softening point (temperature) 112. Температура размягчения по Мартенсу Martens' softening point (temperature) 113. Температура стеклования 114. Теплостойкость Glass transition point (temperature) Heat resistance 115. Теплостойкость при изгибе 116. Термостабильность Heat deflection temperature Thermal stability СТРУКТУРА МАКРОМОЛЕКУЛ (MACRO) MOLECULAR STRUCTURE 117. Анизотропия макромолекулы Molecular anisotropy 118. Вес средневесовой молекулярный Weight-average molecular weight 119. Вес средневязкостный молекулярной Viscosity-average molecular weight 120. Вес среднечисленный молекулярный Number-average molecular weight 121. Время спин-спиновой релаксации Spin-spin relaxation time 122. Время ядерной спин- решеточной релаксации time Spin-lattice relaxation 123. Гибкость макромолекулы Flexibility of macromolecule 124. Группы концевые End groups 125. Группы сиботактические 126. Дефекты цепей Sibotactic groups Chain defects 127. Деформация цепи афинная Affinity chain deformation 128. Длина статистического сегмента 129. Длина цели контурная Length of statistical segment Contour length of chain 130. Жесткость макромолекулы Macromolecular stiffness 131. Клубок гауссовый Gaussian coil 132. Клубок статистический Statistical coil 133, Константа спин-спинового взаимодействия Spin-spin coupling constant 134. Константа трения сегмента Segment friction coefficient 135. Конфигурация макромолекулы Macromolecular configuration 136. Конформация макромолекулы Macromolecaiar conformation 137. Конформация складчатая Folded conformation 138. Коэффициент разветвленности 139. Масса молярная Branching coefficient Molar mass 140. Микроструктура Microstructure 141. Модель макромолекулы Chain model 142. Ориентация макромолекул iMacromolecular orientation 143. Параметр полидисперсности Polydispersity parameter 144. Переход спираль-клубок Helix-coil transition 145. Плотность полимерной сетки Polymer network density 146. Плотность сшивки Cross -link density 147. Подвижность сегмента Segmental mobility 148. Полидисперсность Polydispersity (polymolecularity) 149. Полимер гребнеобразный Comb-like polymer 150. Полимер звездообразный Star -(-like) polymer 151. Полимер лестничный Ladder polymer 152. Полимер разветвленный Branched polymer 153. Полимер с системой сопряжения 154. Полимер хелатный Polyconjugated polymer Chelated polymer 155. Радиус инерции среднеквадратичный Mean-square radius of gyration 156. Разветвленность длинноцепная Long -chain branching 157. Разветвленность короткоцепная Short-chain branching 158. Размер цепи невозмущенный Unperturbed dimension of chain 159. Разнозвенность [Raznozvennost] 160. Распределение молекулярно-весовое дифференциальное Differential molecular weight 161. Распределение молекулярно-весовое интегральное Integral molecular weight 162. Распределение последовательностей звеньев Unit sequence distribution 163. Распределение по типам функциональности Functionality (-type) distribution 164. Расстояние между концами цепи End -to-end distance 165. Расстояние между концами цени среднеквадратичное Mean -square endto-end distance 166. Сегмент кинетический Kinetical segment 167. Сегмент Куна Kuhn segment 168. Стереорегулярность Stereoregularity 169. Структура, циклическая Ring (cyclic) structure 170. Сшивание Crosslinking 171. Фактор формы макромолекулы 172. Функциональность Form-factor of macromolecule Functionality 173. Функциональность ветвления Functionality of branching 174. Цепь макромолекулы основная Backbone chain 175. Цепь макромолекулы персистентная Persistent chain 176. Цепь макромолекулы червеобразная Worm-like chain 177. Цепь свободносочлененная Freely jointed chain НАДМОЛЕКУЛЯРНАЯ СТРУКТУРА 178. Глобула SUPERMOLECULAR STRUCTURE Globule 179. Зацепление между молекулами Entanglement 180. Коэффициент упаковки Packing coefficient 181. Кристалл полимерный из вытянутых цепей 182. Кристалл складчатый Folded-chain crystal 183. Кристалл фибриллярный 184. Ламель Fibrillar crystal Lamella 185. Микрофибрилла 186. Мицелла Extended-chain crystal Microfibril Micelle 187. Мицелла бахромчатая Fringed micelle 188. Молекула проходная Tie molecule 189. Морфология полимеров Polymer morphology 190. Ориентация кристаллов Crystallite orientation 191. Период складывания цепей Period of chain folding 192. Пластификация внутриструктурная Molecular plasticization 193. Пластификация структурная Structural plasticization 194. Плотность макромолекулярного клубка Macromolecular coil density 195. Полимер частично-кристаллический Semicryatslline polymer 196. Порядок ближний Short range order 197. Порядок дальний Long range order 198. Сетка вулканизационная Vulcanization network 199. Сетка полимерная пространственная Three-dimensional network 200. Сетка флуктуационная Fluctuation network 201. Система коллоидная полимерная Colloidal polymeric system 202. Состояние ориентированное Oriented state 203. Степень кристалличности Degree of crystallinity 204. Структура гелеобразная Gel-like structure 205. Структура пачечная Clustered structure 206. Структура пористая Porous structure 207. Структура сетчатая Cross linked structure 208. Структура упорядоченная 209. Структурирование Structurization 210. Упаковка макромолекул 211. Фаза аморфная Ordered structure Packing of macromolecules Amorphous phase 212. Фаза кристаллическая Crystalline phase ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА PHYSICO-CHEMICAL PROPERTIES 213. Взаимодействие ближнего порядка Short-range interaction 214. Взаимодействие внутримолекулярное Intramolecular interaction 215. Взаимодействие дальнего порядка Long-range interaction 216. Взаимодействие межмолекулярное Intermolecular interaction 217. Взаимодействие полимер-растворитель 218. Взаимодействие сегментальное 219. Вращение внутреннее Polymer-solvent interaction Segmental interaction Internal rotation 220. Вращение заторможенное Hindered rotation 221. Вязкость относительная Relative viscosity 222. Вязкость приведенная Reduced viscosity 223. Вязкость удельная Specific viscosity 224. Вязкость характеристическая Intrinsic viscosity 225. Вязкость эффективная Apparent viscosity 226. Гибкость цепи кинетическая Kinetic flexibility of chain 227. Гибкость цепи термодинамическая Thermodynamics flexibility of chain 228. Динамика полимерных систем молекулярная Molecular dynamics of polymer 229. Жесткость полимера 230. Жесткость цепи Polymer stiffness (rigidity) Chain rigidity 231. Качество растворителя термодинамическое of solvent Thermodynamic quality 232. Константа (параметр) Флори-Хаггинса Flory-Huggins constant (parameter) 233. Константы уравнения Марка-Куна-Хувинка MarkKuho-Houwink parameters (constants) 234. Коэффициент второй вириальный Second virial coefficient 235. Коэффициент набухания макромолекулы Swelling coefficient of macromolecule 236. Коэффициент поступательного трения макромолекул Viscous friction coefficient 237. Макрорасслаивание Macroseparation 238. Микрорасслаивание Microseparation 239. Набухание Swelling 240. Набухание равновесное Equilibrium swelling 241. Область расслоения Phaze separation area 242. Область смешиваемости Compatibility range 243. Объем исключенный Excluded volume 244. Объем свободный Free volume 245. Объем смешения Mixing volume 246. Объем собственный Occupied volume 247. Параметр взаимодействия Interaction parameter . 248. Параметр растворимости Solubility parameter 249. Параметр совместимости Compatibility parameter 250. Переход I -го рода First-order transition 251. Переход II -го рода Second-order transition 252. Переходы вторичные Secondary transition 253. Подвижность внутримолекулярная Internal motion 254. Подвижность молекулярная полимеров Chain motion 255. Растворимость взаимная полимеров Mutual solubility of polymers 256. Растворитель идеальный Ideal solvent 257. Растворитель плохой Poor solvent 258. Растворитель Хороший Good solvent 259. θ -Растворитель θ-solvent 260. Селективность растворителя Solvent selectivity 261. Совместимость Compatibility 262. Состояние высокоэластическое Rubbery state 263. Состояние вязкотекучее Viscous-flow state 264. Состояние стеклообразное Glass state 265. Состояние физическое полимеров Physical state of polymers 266. Статистика конфигурационная Configurational statistics 267. Стеклование структурное 268. Студень Structural glass transition Gel 269. Температура растворения верхняя критическая Upper critical solution temperature 270. Температура растворения нижняя критическая Low critical solution temperature 271. Температура смешения верхняя критическая Upper critical mixing temperature 272. Температура смешения нижняя критическая temperature 273. Температура текучести Flow temperature 274. θ (тета)-условия θ (theta)-condition 275. Точка гелеобразовакия Gel-point 276. Точка помутнения Cloud-point 277. Фракционирование Fractionation Low critical mixing