Download Содержание учебно-методического комплекса

Document related concepts

Electromagnetism wikipedia , lookup

Quantum vacuum thruster wikipedia , lookup

Newton's laws of motion wikipedia , lookup

Classical mechanics wikipedia , lookup

Old quantum theory wikipedia , lookup

Standard Model wikipedia , lookup

Elementary particle wikipedia , lookup

Faster-than-light wikipedia , lookup

Nuclear physics wikipedia , lookup

Renormalization wikipedia , lookup

Relational approach to quantum physics wikipedia , lookup

History of optics wikipedia , lookup

Anti-gravity wikipedia , lookup

History of quantum field theory wikipedia , lookup

Theory of everything wikipedia , lookup

Thomas Young (scientist) wikipedia , lookup

T-symmetry wikipedia , lookup

A Brief History of Time wikipedia , lookup

Fundamental interaction wikipedia , lookup

History of subatomic physics wikipedia , lookup

Time in physics wikipedia , lookup

History of physics wikipedia , lookup

Condensed matter physics wikipedia , lookup

Chien-Shiung Wu wikipedia , lookup

Transcript
Содержание учебно-методического комплекса
№
п/п
компонент УМК
I.
Рабочая программа
II.
Методические указания для преподавателей
III. Методические рекомендации для студентов
имя файла*
кол-во
страниц
Рабочая
программа.doc
Рекомендации для
преподавателей.doc
Рекомендации для
студентов.doc
22
Учебно-методические
материалы.doc
29
Контрольноизмерительные
материалы.doc
3
2
2
– по подготовке к практическим занятиям
– по организации самостоятельной работы
IV. Учебно-методические материалы
V.
- новейшие научные и научно-популярные
материалы по последним достижениям в мире
в области физики
(для проектных заданий)
- примеры (образцы) докладов по
предложенным научным темам
Контрольно-измерительные материалы
– задания для подготовки докладов
– задания для написания рефератов
– задания для перевода специализированных
текстов
– задания по самостоятельной работе
VI. Словарь терминов и персоналий
Словарь терминов.doc 10
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
«Кемеровский государственный университет»
Факультет романо-германской филологии
УТВЕРЖДАЮ
Декан
физического факультета
название факультета
/
«
Титов Ф.В.
/
201
г.
»
Рабочая программа дисциплины
«Иностранный язык в сфере профессиональной коммуникации»
(Наименование дисциплины (модуля))
Направление подготовки
011200 ФИЗИКА
(шифр, название направления)
Магистерская программа
Физика конденсированного состояния вещества
Квалификация (степень) выпускника
МАГИСТР
Форма обучения
очная
(очная, очно-заочная и др.)
Кемерово
2011
1. Цели освоения дисциплины
Целями освоения дисциплины являются:

освоение делового и научного стилей иностранного языка,
которые используются на официальных деловых встречах, конференциях;

развитие способности уверенно использовать английский язык
на уровне, необходимом для общения с его носителями в устной и
письменной речи.
2.
Место
дисциплины
«Иностранный
язык
в
сфере
профессиональной коммуникации» в структуре ООП магистратуры.
Для изучения
данного
аспекта необходимы
знания,
умения и
компетенции, полученные студентами за 4 года обучения в вузе. Английский
язык неразрывно связан с базовыми дисциплинами профессионального
цикла. Эта дисциплина, с одной стороны, создавала и создаёт предпосылки
для изучения названных выше дисциплин, с другой стороны, обобщает и
систематизирует уже полученную лингвистическую подготовку бакалавров.
Дисциплина изучается в I-II семестрах.
3. Компетенции обучающегося, формируемые в результате освоения
дисциплины
Данная учебная дисциплина способствует формированию следующих
общекультурных компетенций:
 способностью демонстрировать
углубленные
знания
в
области
гуманитарных и экономических наук (ОК-2);
 способностью
информационных
самостоятельно
технологий
приобретать
и
использовать
с
в
помощью
практической
деятельности новые знания и умения, в том числе в новых областях
знаний, непосредственно не связанных со сферой деятельности,
расширять и углублять своё научное мировоззрение (ОК-3);
 способностью использовать углублённые знания правовых и этических
норм при оценке последствий своей профессиональной деятельности,
при разработке и осуществлении социально-значимых проектов (ОК4);
 способностью адаптироваться к изменению научного и научнопроизводственного профиля своей профессиональной деятельности, к
изменению социокультурных и социальных условий деятельности
(ОК-7);
 способностью к коммуникации в научной, производственной и
социально-общественной сферах деятельности, свободное владение
русским и иностранным языками как средством делового общения
(ОК-8);
 способностью к активной социальной мобильности, способностью к
организации научно-исследовательских и научно-производственных
работ, способностью к управлению научным коллективом (ОК-9);
Выпускник
должен
обладать
следующими
общепрофессиональными компетенциями (ПК):
 способностью
составления
и
и
готовностью
оформления
применять
на
практике
научно-технической
навыки
документации,
научных отчетов, обзоров, докладов и статей (в соответствии с
профилем магистерской программы) на иностранном языке (ПК-4);
 способностью использовать свободное владение профессиональнопрофилированными знаниями в области информационных технологий,
современных компьютерных сетей, программных продуктов, ресурсов
Интернет и иностранного языка для решения задач профессиональной
деятельности, в том числе находящихся за пределами профильной
подготовки (ПК-5);
научно-инновационная деятельность:
 способностью свободно владеть профессиональными знаниями для
анализа и синтеза физической информации (в соответствии с профилем
подготовки) на иностранном языке (ПК-7);
организационно-управленческая деятельность:
 способностью организовать и планировать физические исследования в
зарубежных научно-исследовательских институтах и центрах (ПК-9).
В результате изучения дисциплины студент должен:
 знать:
необходимые
шаблоны
деловой
корреспонденции
на
иностранном языке и разговорные формулы и клише, необходимые для
решения общекультурных, профессиональных и научных задач на
международных конференциях, симпозиумах, круглых столах, при
проведении исследований в зарубежных центрах и т.д.;
 уметь: интегрировать знание иностранного языка и профессиональных
навыков и умений в области физики для организации и осуществления
социально-значимых проектов;

владеть: навыками диалогической и монологической (устной и
письменной) речи на иностранном языке для участия в форумах,
беседах
об
актуальных
научных
направлениях,
современных
достижениях в области физики и связанных с ними экономических и
экологических проблемах как в России, так и в стране изучаемого
языка.
4. Структура и содержание дисциплины: Общая трудоемкость дисциплины
составляет 144 часа.
4.1. Объём дисциплины и виды учебной работы (в часах)
4.1.1. Объём и виды учебной работы (в часах) по дисциплине в целом
Вид учебной работы
Общая трудоемкость базового
модуля дисциплины
Аудиторные занятия (всего)
В том числе:
Лекции
Семинары
Самостоятельная работа
Всего часов
144
36
36
103
В том числе:
Контрольная работа
Вид промежуточного контроля
Вид итогового контроля
2
Зачёт (1 ч)
экзамен (2 ч)
Неделя
семестра
Общая
трудоёмко
сть (часах)
Раздел
№ Дисципли
п/
ны
п
Семестр
4.1.2. Разделы базового обязательного модуля дисциплины и
трудоемкость по видам занятий (в часах)
всего
Виды учебной работы,
включая самостоятельную
работу студентов и
трудоемкость (в часах)
Учебная работа
лекции Практ.
В.т.ч. Самосто
акти ятельная
вных работа
форм
Формы
текущего
контроля
успеваемо
сти (по
неделям
семестра)
Форма
промежуто
чной
аттестаци
и (по
семестрам)
1
Английск
ий язык
для
деловых
встреч,
конферен
ций
1 1-18
72
–
18
18
51,5
1. Индив
идуал
ьный
опрос
2. Фронт
альны
й
опрос
3. Ролев
ая
игра с
устны
м
перев
одом
4. Делов
ая
игра
5. Прове
рка
проек
тных
работ
6. Прове
рка
2
Английск
ий язык
для
общения
по
вопросам
професси
ональной
сферы
2 1-18
72
–
18
18
51,5
рефер
ирова
ния
статьи
7. Прове
рка
напис
ания
письм
а
8. Презе
нтаци
я
аннот
аций
научн
ых
статей
9. Контр
ольна
я
работ
а
10.Зачёт
1. Устн
ый
опрос
2. Фронт
альны
й
опрос
3. Рефер
ат
4. Прове
рка
задан
ия по
перев
оду
5. Устн
ый
опрос
6. Ролев
ая
игра
7. Фронт
альны
й
опрос
8. Контр
ольна
я
работ
а
9. Экзам
ен
4.2. Содержание дисциплины
Содержание разделов базового обязательного модуля дисциплины
№
Наименование
раздела
дисциплины
Содержание раздела
дисциплины
1
Английский язык
для деловых встреч,
конференций
Презентация основного лексикограмматического материала,
необходимого для общения на
международном уровне
Работа с научными и деловыми
документами, необходимыми для
участия в зарубежных научных
конференциях и грантовых
программах.
Участие в конференциях.
Конкурсы, гранты, стипендии для
студентов-физиков в России и за
Результат
обучения,
формируем
ые
компетенци
и
Знать:
лексикограмматичес
кий запас по
теме. Уметь:
употреблять
его в речи.
Владеть:
культурой
мышления;
(ОК-2);
Знать: основные
клише,
схемы, правила письменного и
устного общения на
рубежом.
английском
языке.
Уметь: создавать научные и деловые тексты. Владеть: навыками подготовки научных обзоров,
аннотаций,
составления
рефератов и
библиографий по тематике проводимых исследований,
приемами
библиографического
описания
(ПК-4)
(ПК-7)
Образование «Степень магистра»
за рубежом и в России.
Развитие
науки
физики
в
современных условиях.
Актуальные
вопросы
международных конференций по
проблемам физики.
Молодые учёные и их место в
развитии науки.
Знать:
правила
культуры
поведения и
мышления
делового
общения.
Владеть:
языковыми
выражениями для
научных
дискуссий,
выступлений
с сообщениями, докладами,
устного,
письменного
и виртуального (размещение в
информационных сетях)
представления.
Уметь: высказываться
о собственных, чужих
исследованиях и принимать участие в форумах (ПК-5)
Английский язык
для общения
по вопросам
профессиональной
сферы
Физика. Направления
исследований. Известные и
новейшие достижения.
Знать:
специализир
ованные
лексические
единицы
(термины)
Уметь:
активно
употреблять
их в
профессиона
льном общении.
Уметь:
выполнять
перевод
текста
с
русского
языка
на
иностранны
й; описывать
собственный
проект;
составлять
аннотацию
своего
исследовани
я и тезисов к
своему
исследовани
ю
(ОК-4)
(ПК-7)
(ПК-9)
Библиотека. Поиск информации в
каталогах (в том числе в
электронных) и в сети Интернет.
Заказ книг.
Знать:
речевые
штампы.
Уметь:
составлять
письма по
запросу
информации
(ОК-3)
(ПК-5)
Университет. Оформление
документов для учёбы или
стажировки в зарубежном вузе.
Оформление документов на
участие в грантовых программах.
5. Образовательные технологии
Знать:
лексику по
теме.
Владеть:
навыками
создания
текстов
Уметь: беседовать с
ППС и обучающимися
в
зарубежном
вузе.
(ОК-7)
(ОК-8)
(ОК-9)
(ПК-9)
Разбор конкретных ситуаций, подготовка докладов на семинарах, участие
в их обсуждении, подготовка рефератов, участие в обсуждении рефератов,
проектные задания по изучаемым темам, интерактивный поиск информации
в Интернете, создание аналитического обзора собранной в Интернете
информации, перевод научных текстов.
6. Учебно-методическое обеспечение самостоятельной работы студентов.
Оценочные средства и формы текущего контроля успеваемости,
промежуточной аттестации по итогам освоения дисциплины.
Подготовка докладов, рефератов, интерактивный поиск информации в
Интернете, создание аналитического обзора собранной в Интернете
информации.
Изучение специализированной терминологии дисциплины (глоссарий
приведен в пункте VI данного УМК).
Перевод с английского языка на русский современных текстов по уже
широко известным и новейшим достижениям в области физики в
международных СМИ.
Примеры текстов, предоставляемых студентам для выполнения перевода
с английского на русский язык (полная подборка текстов на перевод и
средств текущего и финального контроля приведены ниже в пункте IV
Учебно-методические материалы и пункте V контрольно-измерительные
материалы).
Текст 1
Science and Technology 31 May 2011
«Isaac Newton: One of the World’s Greatest Scientists»
Much of today's science of physics is based on Newton's discovery of the
three laws of motion and his theory of gravity. Newton also developed one of the
most powerful tools of mathematics. It is the method we call calculus.
Late in his life, Newton said of his work: "If I saw further than other men, it
was because I stood on the shoulders of giants. "
One of those giants was the great Italian scientist, Galileo. Galileo died the
same year Newton was born. Another of the giants was the Polish scientist
Nicholas Copernicus. He lived a hundred years before Newton.
Copernicus had begun a scientific revolution. It led to a completely new
understanding of how the universe worked. Galileo continued and expanded the
work of Copernicus.
Isaac Newton built on the ideas of these two scientists and others. He found
and proved the answers for which they searched.
Isaac Newton was born in Woolsthorpe, England, on December twenty-fifth,
sixteen forty-two.
He was born early. He was a small baby and very weak. No one expected
him to survive. But he surprised everyone. He had one of the most powerful minds
in history. And he lived until he was eighty-four.
Newton's father died before he was born. His mother married again a few
years later. She left Isaac with his grandmother.
The boy was not a good student. Yet he liked to make things, such as kites
and clocks and simple machines.
Newton also enjoyed finding new ways to answer questions or solve
problems. As a boy, for example, he decided to find a way to measure the speed of
the wind.
On a windy day, he measured how far he could jump with the wind at his
back. Then he measured how far he could jump with the wind in his face. From the
difference between the two jumps, he made his own measure of the strength of the
wind.
Strangely, Newton became a much better student after a boy kicked him in
the stomach.
The boy was one of the best students in the school. Newton decided to get
even by getting higher marks than the boy who kicked him. In a short time,
Newton became the top student at the school.
Newton left school to help on the family farm.
It soon became clear, however, that the boy was not a good farmer. He spent
his time solving mathematical problems, instead of taking care of the crops. He
spent hours visiting a bookstore in town, instead of selling his vegetables in the
market.
An uncle decided that Newton would do better as a student than as a farmer.
So he helped the young man enter Cambridge University to study mathematics.
Newton completed his university studies five years later, in sixteen sixtyfive. He was twenty-two years old.
At that time, a deadly plague was spreading across England. To escape the
disease, Newton returned to the family farm. He did more thinking than farming.
In doing so, he found the answers to some of the greatest mysteries of science.
Newton used his great skill in mathematics to form a better understanding of
the world and the universe. He used methods he had learned as a boy in making
things. He experimented. Then he studied the results and used what he had learned
to design new experiments.
Newton's work led him to create a new method in mathematics for
measuring areas curved in shape. He also used it to find how much material was
contained in solid objects. The method he created became known as integral
calculus.
One day, sitting in the garden, Newton watched an apple fall from a tree. He
began to wonder if the same force that pulled the apple down also kept the moon
circling the Earth. Newton believed it was. And he believed it could be measured.
He called the force "gravity." He began to examine it carefully.
He decided that the strength of the force keeping a planet in orbit around the
sun depended on two things. One was the amount of mass in the planet and the
sun. The other was how far apart they were.
Newton was able to find the exact relationship between distance and gravity.
He multiplied the mass of one space object by the mass of the other. Then he
divided that number by the square of their distance apart. The result was the
strength of the gravity force that tied them to each other.
Newton proved his idea by measuring how much gravity force would be
needed to keep the moon orbiting the Earth. Then he measured the mass of the
Earth and the moon, and the distance between them. He found that his
measurement of the gravity force produced was not the same as the force needed.
But the numbers were close.
Newton did not tell anyone about his discovery. He put it aside to work on
other ideas.
Later, with correct measurements of the size of the Earth, he found that the
numbers were exactly the same.
Newton spent time studying light and colors. He used a three-sided piece of
glass called a prism.
He sent a beam of sunlight through the prism. It fell on a white surface. The
prism separated the beam of sunlight into the colors of a rainbow. Newton believed
that all these colors -- mixed together in light -- produced the color white. He
proved this by letting the beam of rainbow-colored light pass through another
prism. This changed the colored light back to white light.
Newton's study of light led him to learn why faraway objects seen through a
telescope do not seem sharp and clear. The curved glass lenses at each end of the
telescope acted like prisms. They produced a circle of colored light around an
object. This created an unclear picture.
Newton invented a new kind of telescope, the reflecting telescope. Today,
the world's largest telescopes are of this basic design.
A few years later, Newton built a different kind of telescope. It used a
curved mirror to make faraway objects seem larger.
Light reflected from the surface of the mirror, instead of passing through a
curved glass lens. Newton's reflecting telescope produced much clearer pictures
than the old kind of telescope.
Years later, the British astronomer Edmund Halley visited Newton. He said
he wanted Newton's help in finding an answer to a problem no one had been able
to solve. The question was this: What is the path of a planet going around the sun?
Newton immediately gave Halley the answer: an egg-shaped path called an
ellipse.
Halley was surprised. He asked for Newton's proof. Newton no longer had
the papers from his earlier work. He was able to recreate them, however. He
showed them to Halley. He also showed Halley all his other scientific work.
Halley said Newton's scientific discoveries were the greatest ever made. He
urged Newton to share them with the world.
Newton began to write a book that explained what he had done. It was
published in sixteen eighty-seven. Newton called his book “The Mathematical
Principles of Natural Philosophy.” The book is considered the greatest scientific
work ever written.
In his book, Newton explains the three natural laws of motion. The first law
is that an object not moving remains still. And one that is moving continues to
move at an unchanging speed, so long as no outside force influences it.
Objects in space continue to move, because nothing exists in space to stop
them.
Newton's second law of motion describes force. It says force equals the mass
of an object, multiplied by the change in speed it produces in an object.
His third law says that for every action, there is an equal and opposite
reaction.
From these three laws, Newton was able to show how the universe worked.
He proved it with easily understood mathematics. Scientists everywhere accepted
Newton's ideas.
The leading English poet of Newton's time, Alexander Pope, honored the
scientist with these words: "Nature and nature's laws lay hid in night. God said, -'Let Newton be!' - and all was light. "
Текст 2.
«Science and Technology»
11 October 2011
Will Physicists Have to Rewrite the Special Theory of Relativity?
This week, we hear about developments in physics that, if proven correct,
could have scientists rewriting physics textbooks. Scientists in Switzerland say
they have measured a kind of subatomic particle traveling faster than the speed of
light. Physics and the special theory of relativity say that is impossible.
FAITH LAPIDUS: Scientists at the CERN physics laboratory in Geneva,
Switzerland, made news last month.
They said they measured a subatomic
particle, called a neutrino, traveling faster than the speed of light. If this is correct,
it violates a main idea of Albert Einstein’s special theory of relativity.
Patrick Fox works at the Fermi National Accelerator Laboratory, or
Fermilab, near Chicago, Illinois. He knows a lot about the theory of relativity.
PATRICK FOX: “I have been studying that for years. It is something you
use day-to-day.”
FAITH LAPIDUS: Patrick Fox explains the reason there is a speed limit for
all matter in the universe.
PATRICK FOX: “The only objects that can travel at the speed of light are
mass-less things, like light.”
FAITH LAPIDUS: Robert Plunkett is a scientist with the Minos Neutrino
Experiment at Fermilab. He says even subatomic particles like neutrinos have a
speed limit.
Part of the Minos experiment at Fermilab.
ROBERT PLUNKETT: “The speed of light is the absolute cosmic speed
limit for the travel of particles.”
FAITH LAPIDUS:
But scientists at CERN say they have recorded a
neutrino particle that broke the cosmic speed limit. They carried out an experiment
that fired a beam of neutrinos from CERN to Italy’s INFN Gran Sasso Laboratory.
The researchers said they observed about fifteen thousand neutrino events. And
they said their observations appear to show that the neutrinos traveled faster than
light. Light travels at about three hundred thousand kilometers a second.
If this is true, the scientists will have to rethink the laws governing mass and
motion.
But Robert Plunkett thinks more work is needed.
ROBERT PLUNKETT: “Skepticism is something we always bring to the
table anytime there is a revolutionary claim like this.”
FAITH LAPIDUS: Patrick Fox notes that other researchers have yet to
confirm the results.
PATRICK FOX: “Before we throw away a cherished principle we have to,
of course, check that this result, which is a very interesting result, is confirmed by
other sources.”
FAITH LAPIDUS:
The MINOS experiment at Fermilab will perform
similar experiments to the one at CERN. They also will measure the speed of
neutrinos.
Robert Plunkett says the MINOS experiment, with an upgrade, can provide a
more exact measurement.
ROBERT PLUNKETT: “Our plans are to upgrade this equipment using a
system of atomic clocks, much like what they had in the European experiment, to
in fact do a measurement that is more precise than theirs, in many ways.”
FAITH LAPIDUS: The MINOS experiment may also measures neutrinos
traveling faster than the speed of light. If that happens, scientists like Patrick Fox
may have to rebuild the laws of physics from the ground up.
Темы для докладов и рефератов
1.
Научно-исследовательская работа в области физики в Кемеровском
государственном университете.
2.
Ведущие научно-исследовательские центры Сибири
(различных направлений физики).
3.
Ведущие научно-исследовательские центры России
(различных направлений физики).
4.
Ведущие научно-исследовательские центры мира
(различных направлений физики).
5.
Оформление необходимых документов на участие в зарубежных
грантовых программах.
6.
Оформление необходимых документов для учебы, стажировки за
границей.
7.
Современные отечественные достижения в области физики.
8.
Современные достижения зарубежных ученых-физиков.
9.
Научные
зарубежные
интернет-ресурсы
для
физиков
(по
конференциям, грантовым программам).
10.
Большой адронный коллайдер.
11.
Великие физики мира (от древности до наших дней).
12.
Великие отечественные физики.
13.
История развития физики как науки.
14.
Физика на службе промышленности.
15.
Физика в жизни и в быту человека.
16.
Атомная энергия.
17.
Развитие новых технологий и защита окружающей среды.
7. Учебно-методическое и информационное обеспечение дисциплины
(модуля)
Список основной учебной литературы
Учебный комплекс не содержит нормативного учебника. Достижение цели
обучения обеспечивается совокупностью аспектных пособий, специальных
текстов и научных статей из периодических
изданий,
курсов, компьютерных программ.
По вопросам перевода в университетской библиотеке:
аудио
и
видео
1. Федянина, Л.И. Прагматические аспекты перевода. Учебное пособие –
Кемерово, 2010.
Список дополнительной учебной литературы
1. Крушельницкая К.Г., Попов М.Н. Советы переводчику: Уч. пособие. – 2-е
изд., доп. – М.: ООО «Изд-во Астрель»; ООО «Изд-во АСТ», 2002.
2. Фёдоров А.В. Основы общей теории перевода (лингвистические проблемы):
Уч. пособие. – 4-е изд., перераб. и доп. – М.: Высшая школа, 1983.
Программное обеспечение и интернет-ресурсы
1.
voaspecialenglish.com разделы: News; Science and Technology
2.
http://www.lib.kemsu.ru/res/
3.
Электронные журналы Американского физического общества (ASP)
4.
Physical Review A
5.
Physical Review B
6.
Physical Review C
7.
Physical Review D
8.
Physical Review E
9.
Physical Review Letters
10.
Reviews of Modern Physics
11.
Physical Review Online Archives
12.
http://de.wikipedia.org
13.
http://www.ABBYY.ru
14.
http://www.lingvo.ru
15.
www.physnews.com
16.
www.physorg.com
17.
www.physics.org
18.
www.physicstoday.org
19.
physicsworld.com
20.
www.livephysics.com
21.
www.physlink.com
22.
physics.newsonly.org
23.
www.particlephysics.ac.uk
24.
http://ajp.aapt.org/
25.
http://www.nrcresearchpress.com/journal/cjp
26.
https://www.cap.ca/
27.
epljournal.org
28.
http://fizika.hfd.hr
29.
http://physicsweb.org/
30.
http://physicsbuzz.physicscentral.com/
31.
http://www.aip.org/pnu/
32.
http://www.aapps.org
33.
http://www.intlpress.com/ATMP/
34.
http://www.europhysicsnews.org/
35.
http://www-bd.fnal.gov/icfabd/news.html
36.
http://www.slac.stanford.edu/pubs/icfa/
37.
http://www.cirs-tm.org/media-eng.php?matiere=physics
38.
http://asadl.org/arlo/
39.
http://www.atmos-chem-phys.net/volumes_and_issues.html
40.
http://chaos.aip.org/
41.
http://www.ejtp.com/
42.
http://e-lc.org/
43.
http://iopscience.iop.org/
8. Материально-техническое обеспечение дисциплины (модуля)
В
качестве
материально-технического
обеспечения
дисциплины
используются мультимедийные средства: стационарные и переносные
компьютеры, цифровые проекторы, интерактивные доски; различные типы
словарей английского языка (толковые, этимологические, синонимические и
др.); аудио-, видеозаписи на английском языке; аутентичные тексты и
текстовые задания на CD.
Программа составлена в соответствии с требованиями ФГОС ВПО с учетом
рекомендаций и ПрООП ВПО по направлению подготовки 011200 ФИЗИКА
(магистратура).
Авторы –
д.ф.н., профессор кафедры английской филологии № 1 Каменева В.А.
к.ф.н, доцент кафедры немецкой филологии Р.Д. Керимов
к.ф.н, доцент кафедры немецкой филологии Л.И. Федянина
Рецензент – д.ф.н., профессор Рябова М.Ю.
Рабочая программа дисциплины
обсуждена на заседании кафедры
Протокол
№
1
от 30
» Августа
201 1 г.
«
зав. кафедрой ________________________ Рябова М.Ю.
(подпись)
Одобрено методической комиссией физического факультета
Протокол
от
№
«
»
201 1 г.
Председатель ________________________ Золотарев М.Л.
(подпись)
II. Методические указания для преподавателей:
При подготовке к занятиям по дисциплине «Инностранный язык в
сфере профессиональной коммуникации» преподавателю следует учитывать
возможность использования современных технических средств презентации
учебной информации в специально оборудованных аудиториях. К таким
средствам относятся: современные цифровые проекторы, электронные
интерактивные доски, компьютеры (стационарные и переносные), а также
СD проигрыватели.
Использование
представленного
технического
оборудования
в
процессе преподавания данной дисциплины не является дополнительным
средством, которое позволяет намного эффективнее и быстрее магистрам
осваивать учебный материал по дисциплине, а составляет неотъемлемую и
обязательную часть данного курса. Это обусловлено в первую очередь
спецификой самого предмета «Иностранный язык в сфере профессиональной
коммуникации» как дисциплины, при освоении которой идет интеграция
знания иностранного языка с уже сформированными профессиональными
навыками физиков-магистров к данному этапу обучения для повышения
своих общекультурных и профессиональных компетенций.
В связи с этим, следует обратить внимание на методическое
обеспечение учебной дисциплины, а именно, на указанный в рабочей
программе раздел с интернет-источниками, где в свободном доступе есть все
необходимые материалы по запланированным темам.
Все эти материалы может использовать как преподаватель, так и
магистр.
Иными
словами,
рекомендуется
стимулировать
магистров
пользоваться дополнительной литературой и интернет-источниками как для
успешного освоения дисциплины, так и для расширения кругозора.
С учетом технической обеспеченностью аудиторий вуза, следует
отметить возможность использования преподавателем и магистрами при
освоении данной дисциплины таких средств программного обеспечения, как
программного пакета Microsoft Office, Microsoft PowerPoint и т.д. Что,
безусловно,
позволит
преподавателям
передать
большее
количество
информации студентам за меньший объем времени, улучшит восприятие
учебного материала.
Использование данного программного обеспечения студентами при
подготовке
проектных
работ
позволит
им
успешнее
справиться
с
поставленными задачами и предложенными проектными заданиями (список
тем для докладов и презентаций приведен выше в I. рабочей программе).
В данный УМК включены тексты статей, которые предлагаются
студентам для перевода. Рекомендуется обновлять или дополнять их каждый
год, поскольку это позволит:
- во-первых, избежать ситуаций, когда студенты последующих годов
обучения «заимствуют» переводы, приготовленные студентами, которые
обучались ранее;
- во-вторых, одна из важных задач данного материала заключается в
ознакомлении магистров с новейшими разработками в физике в различных
странах,
с
актуальными
научными
направлениями.
Это
является
необходимой составляющей данной дисциплины и позволяет магистрам вуза,
где преподается эта дисциплина, планировать или корректировать свою
научную и профессиональную деятельность с учетом этой важной
информации.
При организации самостоятельной работы студентов по освоению
специализированной
терминологии
дисциплины
также
рекомендуется
знакомить их с полным списком терминов на первом занятии, чтобы дать
студентам
возможность
распределить
изучение
лексики
по
частям.
Следовательно, и контроль за ее освоению станет более удобным как для
магистров, так и для самого преподавателя.
III. Методические рекомендации для студентов
Для освоения дисциплины магистру необходимо посещать все занятия,
поскольку некоторые формы работы, такие как дискуссии по проблемам
изучаемой
дисциплины,
магистру
будет
тяжело
осваивать
или
совершенствовать самостоятельно вне аудиторный занятий.
Также от магистра требуется подготовка и выполнение всех проектных
заданий
(например,
по
переводу
специализированных
текстов)
и
самостоятельной работы по изучению дополнительного теоретического
материала. Например, подготовка презентации на иностранном языке своего
научного проекта, информации по ведущим научным центрам России и мира.
Для освоения дисциплины магистру требуется предварительно изучить
в качестве фундамента дисциплину «Иностранный язык», так как все виды
работы в рамках данного курса выполняются на иностранном языке. Кроме
этого, необходимо постоянное самостоятельное совершенствование навыков
устной и письменной речи на иностранном языке. Для этого необходимо
читать и слушать больше материалов на иностранном языке, указанных в
разделе по Интернет-ресурсам для данной дисциплины.
Если
уровень
языковой
подготовки
недостаточно
высок,
то
рекомендуется не пропускать занятий по данной дисциплине, чтобы
постепенно, в течение отведенного времени усовершенствовать навыки
устной и письменной речи на иностранном языке и быть в состоянии
выполнять задачи данного курса по совершенствованию общекультурных и
профессиональных компетенций.
Магистрам следует в начале курса обучения ознакомиться с тем,
какими навыками, знаниями и умениями после ее прохождения они должны
владеть, так как это позволит скоординировать свою аудиторную и
самостоятельную работу и вовремя получить необходимую помощь
преподавателя по корректировке своих слабых сторон.
Поскольку в рамках данной дисциплины магистры работают с
иноязычными материалами, содержащими большое количество терминов,
относящихся к разным областям физики, необходимо заранее, после первого
занятия, взять глоссарий в электронном виде из раздела VI УМК к данной
дисциплине. Начинать работать по освоению терминов на иностранном
языке необходимо с первых занятий, что позволит распределить свои усилия
по выполнению заданий для самостоятельной работы и оптимизировать
процесс обучения.
IV. Учебно-методические материалы:
Подборка современных неадаптированных текстов статей по физике по
новейшим открытиям в мире.
Текст 1. http://www.insidescience.org/research/1-2376
In the Quantum World, Diamonds Can Communicate With Each Other
Oxford physicists using bizarre principle of "entanglement" to cause a
change in a diamond they do not touch.
Dec 1, 2011
By Joel N. Shurkin, ISNS Contributor
The vibrational states of two spatially separated, millimeter-sized diamonds
are entangled at room temperature by scattering a pair of strong pump pulses
(green). The generated motional entanglement is verified by observing nonclassical
correlations in the inelastically scattered light.
(ISNS) -- Researchers working at the Clarendon Laboratory at the
University of Oxford in England have managed to get one small diamond to
communicate with another small diamond utilizing "quantum entanglement," one
of the more mind-blowing features of quantum physics.
Entanglement has been proven before but what makes the Oxford
experiment unique is that concept was demonstrated with substantial solid objects
at room temperature.
Previous entanglements of matter involved submicroscopic particles, often at
cold temperatures.
This experiment employed millimeter-scale diamonds, "not individual
atoms, not gaseous clouds," said Ian Walmsley, professor of experimental physics
at Oxford's Clarendon Laboratory, one of the international team of researchers.
The experiment is reported in this week's edition of Science.
When zapping one artificial diamond with ultrashort laser pulses they
managed to change the vibrations of a second diamond sitting a half a foot away
without touching it.
Entanglement originated in the mind of Albert Einstein, who ironically came
up with the notion trying to disprove quantum mechanics, a branch of physics he
mistrusted all his life.
Under the theory, if two particles, say electrons, are created together, some
of their attributes will become "entangled." If the two are then separated, doing
something to one instantly affects the other. This would happen whether they were
next to each other or across the universe.
For instance, electrons act as if they have tiny bar magnets that point up or
down, described by an attribute called "spin." If the two electrons are entangled
through their spins -- up or down -- and a scientist measures the spin of one, the
spin of the other will react even if one is on a lab table in Oxford and the other
were on a planet near the star Antares, 1,000 light years away. Instantly.
This would mean that the information about the change traveled faster than
the speed of light -- which Einstein said was impossible -- or that long distances
are some kind of illusion.
Einstein disparaged it as "spooky action at a distance." The German
physicist Erwin Schrodinger used the term "entanglement" in a letter to Einstein.
He didn't believe in quantum mechanics either.
"I think I can safely say no one understands quantum mechanics," the late
physicist Richard Feynman once famously explained.
Nonetheless, quantum mechanics is now the paradigm for nature at the
atomic level. It serves as the foundation of much of modern technology, from
lasers to transistors. And entanglement comes as part of the package. Physicists
have been demonstrating it in laboratories since the 1980s, and it is being used in
laboratories experimenting with the building blocks of quantum computers.
The diamonds Walmsley and his international team used were
approximately 3 millimeters (a tenth of an inch) square and 1 millimeter thick.
"We used short pulse lasers with pulse durations of around 100
femtoseconds (a quadrillionth of a second). A femtosecond is to a second as a
nickel is to the debt of the federal government generally speaking," he said.
They chose diamonds because they are crystals, so it was easier to measure
molecular vibrations, and because they are transparent in visible wavelengths.
Light from the lasers altered a kind of mass vibration in the diamond crystal called
phonons, and the measurements showed they were entangled: The vibrations of the
second diamond reacted to what happened to the vibrations of the first.
Performing the experiment with ultrafast laser pulses enabled the researchers
to catch entanglement, which is usually very short-lived in large objects at room
temperature.
"It remains a counterintuitive way of thinking about objects," Walmsley
admitted.
"It's a very nice and clever piece of work with potentially big implications,"
said Sidney Perkowitz, a physicist at Emory University in Atlanta, and author of
"Slow Light: Invisibility, Teleportation and Other Mysteries of Light," a book
partially about entanglement. The macroscopic size, and the fact that this was done
at room temperature, would be important steps toward a practical quantum
technology for telecommunications and computing, and toward deeper
understanding of how the quantum world and the human-scale world are related."
Joel Shurkin is a freelance writer based in Baltimore. He is the author of
nine books on science and the history of science, and has taught science journalism
at Stanford University, UC Santa Cruz and the University of Alaska Fairbanks.
Текст 2. http://www.abc.net.au/science/articles/2012/01/11/3405712.htm
Global warming rate less than feared, Science Online, 06 Dec 2011
Global uncertainty on how to deal with the threats of nuclear weapons and
climate change have forced the 'Doomsday clock' one minute closer to midnight.
"It is now five minutes to midnight," says Dr Allison Macfarlane, chair of
the Bulletin of Atomic Scientists , which created the Doomsday clock in 1947 as a
barometer of how close the world is to an apocalyptic end.
The last decision by the group, which includes a host of Nobel Prize winning
scientists, moved the clock a minute further away from midnight in 2010 on hopes
of global nuclear cooperation and the election of President Barack Obama.
However, today's decision pushes the clock back to the time where it was in
2007.
"It is clear that the change that appeared to be happening at the time is not
happening, not materialising," says co-chair Dr Lawrence Krauss.
"And faced today with the clear and present dangers of nuclear proliferation,
climate change and the continued challenge to find new and sustainable and safe
sources of energy, business as usual reigns the norm among world leaders."
The clock reached its most perilous point in 1953, at two minutes to
midnight, after the United States and the Soviet Union tested thermonuclear
devices within nine months of one another.
It was a far-flung 17 minutes to midnight in 1991 after the two signed the
long-stalled Strategic Arms Reduction Treaty (START) and announced further
unilateral cuts in tactical and strategic nuclear weapons.
Increasing nuclear tensions, refusal to engage in global action on climate
change, and a growing tendency to reject science when it comes to major world
concerns, were cited as key reasons for the latest tick on the clock.
The nuclear accident at Japan's Fukushima plant also highlighted the
volatility of relying on nuclear power in areas prone to natural disasters, scientists
said.
Rejection of science
Professor Robert Socolow, a member of the BAS science and security board
and professor of mechanical and aerospace engineering at Princeton University,
says a common theme emerged in the scientists' talks this year.
He cited a "worrisome trend, notably in the United States but in many other
countries, to reject or diminish the significance of what science says is the
characteristic of a problem."
"The world is in a pickle. Many people want to live better than they live now
on a planet of finite size," he added.
The group says it was heartened by a series of world protest movements,
including the Arab spring, the global Occupy demonstrations and protests in
Russia which show people are seeking a greater say in their future.
However, there is plenty of uncertainty in the nuclear realm, and even a
renewed START deal between Russia and the United States has not achieved the
progress scientists would like, says BAS board member Professor Jayantha
Dhanapala.
"At a time when there are going to be elections in the United States, in
Russia, in France, and a change of leadership in China, there is some uncertainty
therefore about the nuclear weapons programs of these countries and the policies
that the new leadership will follow," says Dhanapala, a former UN under-secretary
general for disarmament affairs.
"The world still has approximately over 20,000 deployed nuclear weapons
with enough power to destroy the world's inhabitants several times over," he adds.
"We also have the prospect of nuclear weapons being used by terrorists and
non-state actors and therefore the problem of nuclear weapon use either by
accident or by design.... remains a very serious problem."
Worrying reliance on fossil fuels
Executive director of the group, Dr Kennette Benedict, highlighted the
dangers of a continued world reliance on fossil fuels, noting that power plants built
in this decade will spew pollution for the next 50 years.
"The global community may be near a point of no return in efforts to prevent
catastrophe from changes in the Earth's climate," she said.
"The actions taken in the next few years will set us on a path that will be
extremely difficult to redirect."
Krauss adds that the Fukushima nuclear disaster in Japan has reminded
scientists of the risks of trading one form of energy for another in a risky
environment.
"With damage to a nuclear reactor in Japan, the complex issue of the
relationship between nuclear reactors, nuclear weapons and sustainable energy
production without global warming has become even more complex."
Текст 3. http://www.physorg.com/news/2012-01-nanoscale-biologicalcoating.html
Nanoscale biological coating is a new way to stop the bleeding
January 10, 2012 by Anne Trafton
MIT researchers have developed a coating of thrombin, shown here, and
tannic acid. After being sprayed onto a surface, the material can halt bleeding
within seconds. Image: Wikimedia/Nevit Dilmen
MIT engineers have developed a nanoscale biological coating that can halt
bleeding nearly instantaneously, an advance that could dramatically improve
survival rates for soldiers injured in battle.
The researchers, led by Paula Hammond and funded by MIT’s Institute of
Soldier Nanotechnologies and a Denmark-based company, Ferrosan Medical
Devices A/S, created a spray coating that includes thrombin, a clotting agent found
in blood. Sponges coated with this material can be stored stably and easily carried
by soldiers or medical personnel. The sponges could also prove valuable in civilian
hospitals, says Hammond, the David H. Koch Professor in Engineering.
“The ability to easily package the blood-clotting agent in this sponge system
is very appealing because you can pack them, store them and then pull them out
rapidly,” she says.
Hammond and her colleagues described the technology in the Dec. 27 online
edition of Advanced Materials. Lead author of the paper is Anita Shukla PhD ’11,
who is now a postdoc at Rice University.
Uncontrolled bleeding is the leading cause of trauma death on the battlefield.
Traditional methods to halt bleeding, such as tourniquets, are not suitable for the
neck and many other parts of the body. In recent years, researchers have tried
alternative approaches, all of which have some disadvantages. Fibrin dressings and
glues have a short shelf life and can cause an adverse immune response, and zeolite
powders are difficult to apply under windy conditions and can cause severe burns.
Another option is bandages made of chitosan, a derivative of the primary structural
material of shellfish exoskeletons. Those bandages have had some success but can
be difficult to mold to fit complex wounds.
Many civilian hospitals use a highly absorbent gelatin sponge produced by
Ferrosan to stop bleeding. However, those sponges need to be soaked in liquid
thrombin just before application to the wound, making them impractical for
battlefield use. Hammond’s team came up with the idea to coat the sponges with a
blood-clotting agent in advance, so they would be ready when needed, for either
military or civilian use.
To do that, the researchers developed a nanoscale biological coating that
consists of two alternating layers sprayed onto a material, such as the sponges used
in this study. The researchers discovered that layers of thrombin, a natural clotting
protein, and tannic acid, a small molecule found naturally in tea, yield a film
containing large amounts of functional thrombin. Both materials are already
approved by the U.S. Food and Drug Administration, which could help with the
approval process for a commercialized version of the sponges, Shukla says.
Micro / nanomanipulators - Flexible and integrated solutions for TEM /
SEM sample preparation - www.imina.ch
A key advantage of the spray method is that it allows a large amount of
thrombin to be packed into the sponges, coating even the interior fibers, says David
King, a trauma surgeon and instructor in surgery at Massachusetts General
Hospital who was not involved in this research.
“All of the existing hemostatic materials suffer from the same limitation,
which is being able to deliver a dense enough package of hemostatic material to
the bleeding site. That’s why this new material is exciting,” says King, also an
Army reservist who has served in Afghanistan as chief of trauma surgery.
Once sprayed, the sponges can be stored for months before use. The sponges
can also be molded to fit the shape of any wound. “Now we have an alternative
that could be used without applying a large amount of pressure and can conform to
a variety of wounds, because the sponges are so malleable,” Shukla says.
In tests with animals at Ferrosan, the coated sponges were applied to
wounds, with light pressure (from a human thumb), for 60 seconds — and stopped
the bleeding within that time. Sponges lacking thrombin required at least 150
seconds to stop the bleeding. A simple gauze patch, applied for 12 minutes (the
length of the experiment), did not stop the bleeding.
The researchers have filed a patent application on this technology and on
similar sponges coated with the antibiotic vancomycin. Hammond’s lab is now
working on combining the blood-clotting and antibiotic activities in a single
sponge.
Provided by Massachusetts Institute of Technology (news : web)
This
story
is
republished
courtesy
of
MIT
News
(http://web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.
Текст. 4. http://www.physorg.com/news/2012-01-nanoscale-metallicferroelectrics.html
Experiments prove nanoscale metallic conductivity in ferroelectrics
January 9, 2012
ORNL researchers used piezoresponse force microscopy to demonstrate the
first evidence of metallic conductivity in ferroelectric nanodomains.
The prospect of electronics at the nanoscale may be even more promising
with the first observation of metallic conductance in ferroelectric nanodomains by
researchers at Oak Ridge National Laboratory.
Ferroelectric materials, which switch their polarization with the application
of an electric field, have long been used in devices such as ultrasound machines
and sensors. Now, discoveries about ferroelectrics' electronic properties are
opening up possibilities of applications in nanoscale electronics and information
storage.
In a paper published in the American Chemical Society's Nano Letters, the
ORNL-led team demonstrated metallic conductivity in a ferroelectric film that
otherwise acts as an insulator. This phenomenon of an insulator-metal transition
was predicted more than 40 years ago by theorists but has eluded experimental
proof until now.
"This finding unambiguously identifies a new conduction channel that
percolates through the insulating matrix of the ferroelectric, which opens
potentially exciting possibilities to 'write' and 'erase' circuitry with nanoscale
dimensions," said lead author Peter Maksymovych of ORNL's Center for
Nanophase Materials Sciences.
From an applied perspective, the ability to use only an electric field as a
knob that tunes both the magnitude of metallic conductivity in a ferroelectric and
the type of charge carriers is particularly intriguing. Doing the latter in a
semiconductor would require a change of the material composition.
"Not only can we turn on metallic conductivity, but if you keep changing the
bias dials, you can control the behavior very precisely," Maksymovych said. "And
the smaller the nanodomain, the better it conducts. All this occurs in the exact
same position of the material, and we can go from an insulator to a better metal or
a worse metal in a heartbeat or faster. This is potentially attractive for applications,
and it also leads to interesting fundamental questions about the exact mechanism of
metallic conductivity."
Although the researchers focused their study on a well-known ferroelectric
film called lead-zirconate titanate, they expect their observations will hold true for
a broader array of ferroelectric materials.
"We also anticipate that extending our studies onto multiferroics, mixedphase and anti-ferroelectrics will reveal a whole family of previously unknown
electronic properties, breaking new ground in fundamentals and applications
alike," said co-author and ORNL senior scientist Sergei Kalinin.
More information: The full paper, "Tunable Metallic Conductance in
Ferroelectric Nanodomains," is available at http://pubs.acs.or … 21/nl203349b
Provided by Oak Ridge National Laboratory (news : web)
Текст
5.
http://www.physorg.com/news/2012-01-scientists-mystery-
armchair-nanotubes.html
Armchair-enriched batches of nanotubes show their colors in an array of
varying types. The vial at left is a mix of nanotubes straight from the furnace,
suspended in liquid. The vials at right show nanotubes after separation through
ultracentrifugation. Excitons absorb light in particular frequencies that depend on
the diameter of the tube; the mix of colors not absorbed are what the eye sees.
(PhysOrg.com) -- Rice University researchers have figured out what gives
armchair nanotubes their unique bright colors: hydrogen-like objects called
excitons.
Their findings appear in the online edition of the Journal of the American
Chemical Society.
Armchair carbon nanotubes – so named for the "U"-shaped configuration of
the atoms at their uncapped tips – are one-dimensional metals and have no band
gap. This means electrons flow from one end to the other with little resistivity, the
very property that may someday make armchair quantum wires possible.
The Rice researchers show armchair nanotubes absorb light like
semiconductors. An electron is promoted from an immobile state to a conducting
state by absorbing photons and leaving behind a positively charged "hole," said
Rice physicist Junichiro Kono. The new electron-hole pair forms an exciton, which
has a neutral charge.
"The excitons are created by the absorption of a particular wavelength of
light," said graduate student and lead author Erik Hároz. "What your eye sees is the
light that's left over; the nanotubes take a portion of the visible spectrum out." The
diameter of the nanotube determines which parts of the visible spectrum are
absorbed; this absorption accounts for the rainbow of colors seen among different
batches of nanotubes.
Scientists have realized that gold and silver nanoparticles could be
manipulated to reflect brilliant hues – a property that let artisans who had no
notions of "nano" create stained glass windows for medieval cathedrals. Depending
on their size, the particles absorbed and emitted light of particular colors due to a
phenomenon known as plasma resonance.
In more recent times, researchers noticed semiconducting nanoparticles, also
known as quantum dots, show colors determined by their size-dependent band
gaps.
But plasma resonance happens at wavelengths outside the visible spectrum
in metallic carbon nanotubes. And armchair nanotubes don't have band gaps.
Kono's lab ultimately determined that excitons are the source of color in
batches of pure armchair nanotubes suspended in solution.
The results seem counterintuitive, Kono said, because excitons are
characteristic of semiconductors, not metals. Kono is a professor of electrical and
computer engineering and of physics and astronomy.
While armchair nanotubes don't have band gaps, they do have a unique
electronic structure that favors particular wavelengths for light absorption, he said.
"In armchair nanotubes, the conduction and valence bands touch each other,"
Kono said. "The one-dimensionality, combined with its unique energy dispersion,
makes it a metal. But the bands develop what's called a van Hove singularity,"
which appears as a peak in the density of states in a one-dimensional solid. "So
there are lots of electronic states concentrated around this singularity."
Exciton resonance tends to occur around these singularities when hit with
light, and the stronger the resonance, the more distinguished the color. "It's an
unusual quality of these particular one-dimensional materials that these excitons
can actually exist," Hároz said. "In most metals, that's not possible; there's not
enough Coulomb interaction between the electron and the hole for an exciton to be
stable."
The new paper follows on the heels of work by Kono and his team to create
batches of pure single-walled carbon nanotubes through ultracentrifugation. In that
process, nanotubes were spun in a mix of solutions with different densities up to
250,000 times the force of gravity. The tubes naturally gravitated toward separated
solutions that matched their own densities to create a colorful "nano parfait."
As a byproduct of their current work, the researchers proved their ability to
produce purified armchair nanotubes from a variety of synthesis techniques. They
now hope to extend their investigation of the optical properties of armchairs
beyond visible light. "Ultimately, we'd like to make one collective spectrum that
includes frequency ranges all the way from ultraviolet to terahertz," Hároz said.
"From that, we can know, optically, almost everything about these nanotubes."
More information: Read the abstract at http://pubs.acs.or … 21/ja209333m
Provided by Rice University (news : web)
Текст 6. http://www.physorg.com/news/2012-01-narrowest-wiressilicon-current-capability.html
Narrowest conducting wires in silicon ever made show the same current
capability as copper
January 5, 2012
The narrowest conducting wires in silicon ever made – just four atoms wide
and one atom tall – have been shown to have the same electrical current carrying
capability of copper, according to a new study published today in the journal
Science.
Despite their astonishingly tiny diameter – 10,000 times thinner than a
human hair – these wires have exceptionally good electrical properties, raising
hopes they will serve to connect atomic-scale components in the quantum
computers of tomorrow.
"Interconnecting wiring of this scale will be vital for the development of
future atomic-scale electronic circuits," says the lead author of the study, Bent
Weber, a PhD student in the ARC Centre of Excellence for Quantum Computation
and Communication Technology at the University of New South Wales, in Sydney,
Australia.
The researchers discovered that the electrical resistivity of their wires – a
measure of the ease with which electrical current can flow – does not depend on
the wire width. Their behaviour is described by Ohm's law, which is a fundamental
law of physics taught to every high school student.
"It is extraordinary to show that such a basic law still holds even when
constructing a wire from the fundamental building blocks of nature – atoms," says
Weber.
The discovery demonstrates that electrical interconnects in silicon can shrink
to atomic dimensions without loss of functionality, says the Centre's Director and
leader of the research, Professor Michelle Simmons.
Wires just one atom tall have been created by inserting a string of
phosphorus atoms in a silicon crystal by a team of researchers from the University
of New South Wales, Melbourne University and Purdue University. This image
from a computational simulation run of the wires shows electron density as
electrons flow from left to right. The wires are 20 times smaller than the smallest
wires now available and measure just four atoms wide by one phosphorus atom
tall. Credit: Purdue University /Sunhee Lee, Hoon Ryu and Gerhard Klimeck
"Driven by the semiconductor industry, computer chip components
continuously shrink in size allowing ever smaller and more powerful computers,"
Simmons says.
"Over the past 50 years this paradigm has established the microelectronics
industry as one of the key drivers for global economic growth. A major focus of
the Centre of Excellence at UNSW is to push this technology to the next level to
develop a silicon-based quantum computer, where single atoms serve as the
individual units of computation," she says.
"It will come down to the wire. We are on the threshold of making
transistors out of individual atoms. But to build a practical quantum computer we
have recognised that the interconnecting wiring and circuitry also needs to shrink
to the atomic scale."
Creating such tiny components has been made possible using a technique
called scanning tunnelling microscopy. "This technique not only allows us to
image individual atoms but also to manipulate them and place them in position,"
says Weber.
More information: "Ohm's Law Survives to the Atomic Scale," by B.
Weber, et al. Science (2012).
Provided by University of New South Wales (news : web)
Ads by Google
Подборка примеров (образцов) по докладам о различных научных
центрах.
Образец № 1. SLAC National Accelerator Laboratory
SLAC National Accelerator Laboratory is home to a two-mile linear
accelerator—the longest in the world. Originally a particle physics research center,
SLAC is now a multipurpose laboratory for astrophysics, photon science,
accelerator and particle physics research. Six scientists have been awarded the
Nobel Prize for work carried out at SLAC and the future of the laboratory promises
to be just as extraordinary.
The laboratory seeks to be a leader in exploring frontier questions of science
that are important to the nation.
SLAC Mission Statement
SLAC programs explore the ultimate structure and dynamics of matter and
the properties of energy, space and time - at the smallest and largest scales, in the
fastest processes and at the highest energies - through robust scientific programs,
excellent accelerator based user facilities and valuable partnerships.
SLAC Core Competencies
The foundational core competencies underpinning activities at SLAC
are:

Electron-based accelerator research and technology

Advanced instrumentation, diagnostics and systems integration

Theory and innovative techniques for data analysis, modeling, and
simulation in Photon Science, Particle Physics and Particle Astrophysics

Management of ultra-large data sets for users and collaborations
distributed worldwide
SLAC is truly a multi-purpose laboratory. Established in 1962 as a
particle physics center, the laboratory has expanded over the years to include some
of the world's leading photon science and astrophysics institutes.
Photon science, the study of matter through its interaction with light, is the
most rapidly expanding area of research at SLAC. The laboratory's Photon Science
research program includes:

LCLS
As the world's most powerful X-ray laser, the Linac Coherent Light Source
creates unique light that can resolve detail the size of atoms and see processes that
occur in less than one tenth of a trillionth of a second. At these unprecedented
speeds and scales, the LCLS has embarked on groundbreaking research in physics,
structural biology, energy science, chemistry and a host of other fields.

PULSE
A joint venture with Stanford University, the Photon Ultrafast Laser Science
and Engineering institute focuses on ultrafast structural and electronic dynamics in
atomic physics, chemistry, biology and physics, pushing the frontiers of LCLS
performance.

SIMES
The Stanford Institute for Materials and Energy Science addresses key
challenges in the areas of condensed matter physics and materials science,
elucidating the electronic and atomistic structure, collective behavior and dynamics
of materials and their interfaces. This understanding is the basis for new clean and
economical energy with reduced environmental impacts and other technologies
important to our society.

SSRL
The Stanford Synchrotron Radiation Lightsource creates synchrotron X-ray
light by bending the path of electrons traveling the speed of light around a storage
ring. The extremely bright X-rays can be used to view the nanoworld, leading to
discoveries in fields including solid-state physics, materials science, environmental
sciences, structural biology and chemistry.

SUNCAT
The Center explores challenges associated with the atomic-scale design of
catalysts for chemical transformations of interest for energy conversion and
storage. By combining experimental and theoretical methods the aim is to develop
a quantitative description of chemical processes at the solid-gas and solid-liquid
interface.
SLAC uses both accelerator and non-accelerator based experiments to probe
the nature of the fundamental constituents and forces operating in the Universe.
The laboratory's Particle Physics and Astrophysics program includes:

ARD
The Accelerator Research Division is pursuing novel ways to accelerate
particles to higher speeds in shorter distances than has ever before been achieved.
Key activities include studies of the ultimate acceleration gradients that can be
achieved with radio-frequency structures, and investigations using beam-plasma
interactions and laser-dielectric interactions to provide intense accelerating fields.

ATLAS
SLAC plays an important role in the ATLAS (A Toroidal LHC ApparatuS)
experiment on the Large Hadron Collider at CERN, a particle physics laboratory
located on the Franco-Swiss border. SLAC serves as a Tier 2 computing center for
ATLAS, and has been involved in designing and building the pixel detector and
high-level trigger systems for this experiment.

BaBar
The BaBar experiment seeks to understand the violation of CP (charge
parity) symmetry, the fundamental symmetry of nature that may explain why the
universe contains more matter than antimatter. BaBar has shown that nature
violates this symmetry in various surprising ways, but that it is not enough to
explain all of the missing antimatter. BaBar has also led to a vastly increased
understanding of how quarks interact with one another, and has the potential to
find signs of new physics beyond the Standard Model of particle physics.
The SLAC Theoretical Physics Group works on virtually all areas of highenergy physics, from the development of fundamental theories and concepts to
detailed tests of these theories at colliders and other experimental facilities. A very
close and unique collaboration exists between the experimental and the theoretical
efforts at SLAC, providing an exciting and stimulating research environment.

EXO
The Enriched Xenon Observatory is an underground observatory that will
search for something never before seen: a neutrinoless double beta decay, which
would prove that neutrinos are their own anti-particles, and provide an
unambiguous measurement of neutrino masses.

FGST
SLAC helped build the newest major space observatory, the Fermi Gammaray Space Telescope. Launched into orbit in June 2008, the telescope studies some
of the most energetic processes in the universe, beyond the reach of Earth-bound
accelerator facilities.

Geant4
The Geant4 collaboration has created an evolving software toolkit for the
simulation of particle interactions in complex devices. Geant4 is widely used in
high energy physics, space and medicine. The SLAC Geant4 group has a major
role in Geant4, leading the work on hadronic physics, visualization and overall
software architecture.

ILC
The International Linear Collider, a proposed new electron-positron particle
collider, will allow physicists to explore energy regions well beyond the reach of
today's accelerators. At those energies, researchers anticipate significant
discoveries that will lead to a radical new understanding of dark matter, extra
spatial dimensions and fundamental symmetries in nature.

JDEM
SLAC is currently working in collaboration with several other institutions on
The Joint Dark Energy Mission to explore the properties of dark energy and
measure how cosmic expansion has changed over time.

KIPAC
At the Kavli Institute for Particle Astrophysics and Cosmology, SLAC and
Stanford researchers explore the most fascinating and challenging topics in
astrophysics and cosmology that have direct relevance to high-energy physics—
everything from black holes and neutron stars to dark matter and dark energy.

LARP
SLAC is currently involved in several accelerator development projects for
the Large Hadron Collider through the LHC Accelerator Research Program, a
consortium of SLAC, Brookhaven, Fermi and Lawrence Berkeley National
Laboratories.

LSST
SLAC is leading the R & D effort for the 3.2 gigapixel camera planned for
the Large Synoptic Survey Telescope, a wide-field, ground-based facility that will
take deep images of the entire accessible sky every few nights. LSST will allow us
to track the evolution of the universe and provide important clues as to the nature
of dark matter and dark energy.
Образец № 2.
CERN - the European Organization for Nuclear Research
CERN, the European Organization for Nuclear Research, is one of the
world’s largest and most respected centres for scientific research. Its business is
fundamental physics, finding out what the Universe is made of and how it works.
At CERN, the world’s largest and most complex scientific instruments are used to
study the basic constituents of matter — the fundamental particles. By studying
what happens when these particles collide, physicists learn about the laws of
Nature.
The instruments used at CERN are particle accelerators and detectors.
Accelerators boost beams of particles to high energies before they are made to
collide with each other or with stationary targets. Detectors observe and record the
results of these collisions.
Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss
border near Geneva. It was one of Europe’s first joint ventures and now has 20
Member States.
The convention that established CERN in 1954 clearly laid down the main
missions for the Organization.
Primarily, the Convention states:
“The Organization shall provide for collaboration among European States in
nuclear research of a pure scientific and fundamental character (...). The
Organization shall have no concern with work for military requirements and the
results of its experimental and theoretical work shall be published or otherwise
made generally available”.
Today it is the contents of the nucleus – the basic building blocks of the
Universe – that provide the key to unlock the frontier of fundamental research, but
CERN’s main mission remains essentially the same.
The Convention also states that CERN shall organize and sponsor
international co-operation in research, promoting contacts between scientists and
interchange with other laboratories and institutes. This includes dissemination of
information, and the provision of advanced training for research workers, which
continue to be reflected in the current programmes for technology transfer and
education and training at many levels.
Research: Seeking and finding answers to questions about the Universe
Technology: Advancing the frontiers of technology
Collaborating: Bringing nations together through science
Education: Training the scientists of tomorrow
One dream of CERN’s founders, to achieve European eminence in ‘big’
science, was realised in 1984, when Carlo Rubbia and Simon Van der Meer
received the Nobel Prize in physics for “their decisive contributions to the large
project which led to the discovery of the field particles W and Z, communicators of
the weak interaction.” The project was a magnificently executed scheme to collide
protons and antiprotons in the existing Super Proton Synchrotron. The
experimental results confirmed the unification of weak and electromagnetic forces,
the electroweak theory of the Standard Model.
Less than a decade later, Georges Charpak, a CERN physicist since 1959,
received the 1992 physics Nobel for “his invention and development of particle
detectors, in particular the multiwire proportional chamber, a breakthrough in the
technique for exploring the innermost parts of matter.” Charpak’s multiwire
proportional chamber, invented in 1968, and his subsequent developments
launched the era of fully electronic particle detection. Charpak’s detectors are also
used for biological research and could eventually replace photographic recording
in applied radio-biology. The increased recording speeds translate into faster
scanning and lower body doses in medical diagnostic tools based on radiation or
particle beams.
Most of the activities at CERN are currently directed towards operating
the new Large Hadron Collider (LHC), and the experiments for it. The LHC
represents a large-scale, worldwide scientific cooperation project.
The LHC tunnel is located 100 metres underground, in the region between
the Geneva airport and the nearby Jura mountains. It uses the 27 km circumference
circular tunnel previously occupied by LEP which was closed down in November
2000. CERN's existing PS/SPS accelerator complexes will be used to preaccelerate protons which will then be injected into the LHC.
Seven experiments (CMS, ATLAS, LHCb, MoEDAL[14] TOTEM, LHCforward and ALICE) will run on the collider; each of them will study particle
collisions from a different point of view, and with different technologies.
Construction for these experiments required an extraordinary engineering effort.
Just as an example, a special crane had to be rented from Belgium in order to lower
pieces of the CMS detector into its underground cavern, since each piece weighed
nearly 2,000 tons. The first of the approximately 5,000 magnets necessary for
construction was lowered down a special shaft at 13:00 GMT on 7 March 2005.
This accelerator has begun to generate vast quantities of data, which CERN
streams to laboratories around the world for distributed processing (making use of
a specialised grid infrastructure, the LHC Computing Grid). In April 2005, a trial
successfully streamed 600 MB/s to seven different sites across the world. If all the
data generated by the LHC is to be analysed, then scientists must achieve 1,800
MB/s before 2008.
The initial particle beams were injected into the LHC August 2008.The first
attempt to circulate a beam through the entire LHC was at 8:28 GMT on 10
September 2008, but the system failed because of a faulty magnet connection, and
it was stopped for repairs on 19 September 2008.
The LHC resumed its operation on Friday the 20 November 2009 by
successfully circulating two beams, each with an energy of 3.5 trillion electron
volts. The challenge that the engineers then faced was to try to line up the two
beams so that they smashed into each other. This is like "firing two needles across
the Atlantic and getting them to hit each other" according to the LHC's main
engineer Steve Myers, director for accelerators and technology at the Swiss
laboratory.
At 1200 BST on Tuesday 30 March 2010 the LHC successfully smashed
two proton particle beams travelling with 3.5 TeV (trillion electron volts) of
energy, resulting in a 7 TeV event. However, this is just the start of a long road
toward the expected discovery of the Higgs boson. This is mainly because the
amount of data produced is so huge it could take up to 24 months to completely
analyse it all. At the end of the 7 TeV experimental period, the LHC will be shut
down for maintenance for up to a year, with the main purpose of this shut down
being to strengthen the huge magnets inside the accelerator. When it re-opens, it
will attempt to create 14 TeV events.
Образец № 3.
The American Institute of Physics
The American Institute of Physics (AIP) is a 501(c)(3) not-for-profit
membership corporation created for the purpose of promoting the advancement
and diffusion of the knowledge of physics and its application to human welfare. It
is the mission of the Institute to serve the sciences of physics and astronomy by
serving its Member Societies, individual scientists, students and the general public.
As a "society of societies," AIP supports ten Member Societies, who
collectively represent a broad cross-section of more than 135,000 scientists,
engineers, and educators in the global physical science community. With an
extensive catalog of top-cited journals, AIP is one of the world's leading publishers
in the physical sciences. AIP pursues innovation in electronic publishing of
scholarly journals and offers full-solution publishing services for its Member
Societies. AIP publishes 13 journals; two magazines, including its flagship
publication Physics Today; and the AIP Conference Proceedings series.
Through its Physics Resources Center, AIP provides a spectrum of services
and programs that encompass education and outreach, science communication,
government relations, career services, statistical research, industrial outreach, and
the history of physics and other sciences.
Member societies:

Acoustical Society of America

American Association of Physicists in Medicine

American Association of Physics Teachers

American Astronomical Society

American Crystallographic Association

American Geophysical Union

American Physical Society

American Vacuum Society

Optical Society

Society of Rheology
Affiliated societies:

American Association for the Advancement of Science, Section on
Physics

American Chemical Society, Division of Physical Chemistry

American Institute of Aeronautics and Astronautics

American Meteorological Society

American Nuclear Society

American Society of Civil Engineers

ASM International

Astronomical Society of the Pacific

Biomedical Engineering Society

Council on Undergraduate Research, Physics & Astronomy Division

Electrochemical Society

Geological Society of America

IEEE Nuclear & Plasma Sciences Society

International Association of Mathematical Physics

International Union of Crystallography

International Centre for Diffraction Data

Laser Institute of America

Materials Research Society

Microscopy Society of America

National Society of Black Physicists

Polymer Processing Society

Society for Applied Spectroscopy

SPIE
Образец № 4.
The Solar Physics and Space Plasma Research Centre
The Solar Physics and Space Plasma Research Centre (SP²RC) at the
University of Sheffield seeks to understand the nature of key plasma processes
occurring in the solar interior and the atmosphere of the Sun, from photosphere to
corona, with particular attention devoted to the various coupling mechanisms of
these apparently distinct regions.
A large part of the energy flux released in the solar atmosphere travels into
interplanetary space and impacts on the Earth's bow shock, energising the
magnetosphere and influencing the composition, energy balance and dynamics of
the ionosphere, plamasphere and plasmapause.
The generation of energetic events in the convection zone and their
propagation through the solar-terrestrial system is investigated by members of
SP²RC by using mathematical modelling.
The mathematical approach involves rigorous analytical work and the
implementation of parallel computing (GRID technology) where results are
continuously tested by making and using ground-base(e.g. SST, DSO) and highresolution satellite observations (e.g. SOHO, TRACE, Hinode, SDO).
SP²RC's research programme involves projects on Helioseismology,
Convection Zone & Tachocline, Oscillations & Dynamics in the Solar
Atmosphere, Global Coronal Seismology, Magnetic Reconnection, and Absolute &
Convective Instabilties.
The main aims of SP²RC are
(1) to understand the key important physical processes governing the energy
flow from the convective zone to the solar atmosphere and down to the Earth's
upper atmosphere using analysis of observational data, and through mathematical
and computational modelling.
(2) to model the coupling of the various traditionally considered `distinct'
regions of the Sun-Earth system (e.g. momentum transport through tachocline;
coupling of global solar oscillations to the solar atmosphere; magnetic coupling
from photosphere to corona and CMEs; etc.).
(3) to develop and update our mathematical and computational models, and
our data analysis techniques to achieve the above objectives.
(4) to verify observationally our mathematical and numerical modelling.
(5)
to
absorb
advances
made
elsewhere
and
disseminate
the
results/knowledge base in order to keep the Group's activities at the forefront of
world-wide research.
(6) to offer PhD and postdoctoral training of the highest possible quality.
(7) to contribute UK's leadership of the high-profile international solar
research.
Key Achievements:
Determination of the nature of coronal global EIT waves & initialisation of
the field of global coronal seismology
Derivation and solution to the Klein-Gordon-Burgers equation.
Establishing the role of magnetic fields in the amplitude and frequency
modulations of the solar p-modes.
Proving evidence (both observational and modelling) for the direct dynamic
effects of photospheric wave leakage (e.g. p-modes) on atmospheric fine-scale
structure formation (e.g. spicule formation and coronal wave excitation).
Примеры рассказа о своей научной деятельности.
Пример № 1. http://www.physics.upenn.edu/people/m.cvetic.html
My research interest lies in a variety of problems of elementary particle
physics ranging from the study of basic interactions to experimental tests of
fundamental theories. My background is in basic theory (effective Lagrangian of
superstring and M-theory, supergravity, and general relativity) as well as in
phenomenology (implications of extended gauge structures and phenomenological
implications of string theories), and I tend to pursue research that bridges the gap
between basic theory and the experimental consequences of these theories.
My main research contributions have been along the following
directions:
Constructions of four-dimensional solutions of superstring theory and
derivations of their phenomenological implications. The program on physical
implications of classes of semi-realistic heterotic string models in the mid/late
nineties was one of the very few strong efforts, pursuing the "top-down" approach
connecting developments in formal theory with possible phenomenological
implications. Recent efforts have focused on open string constructions resulting in
first examples of supersymmetric solutions three-family standard-like and grand
unified models, as well as first constructions of semi-realistic models with
stabilized moduli. These models have an interpretation as M-theory compactified
on seven-dimensional manifolds with G2 holonomy, thus probing a new corner of
M-theory, that is generating considerable activity in both the physics and
mathematics communities.
Nonperturbative gravitational physics in fundamental theory. This effort was
initiated and led to pioneering work on domain walls and black holes in
supergravity and superstring theory. It resulted in the first examples of
supersymmetric
walls
and
a
subsequent
unifying
description
of such
configurations. These solutions have subsequently found a realization within fivedimensional supergravity as gravity trapping solutions. The recent effort focused
on the study of such configurations both from the point of view of
phenomenological implications as well as from AdS/CFT correspondence.
In mid/late nineties a broad program on black holes in string theory resulted
in the first examples of supersymmetric black holes in string theory, suitable for
the study of black hole microscopics. Subsequent efforts have shed light on
properties of general rotating black holes that contributed to dramatic progress in
the study of their microscopic properties. Most recent effort involves constructions
of general charged spinning black holes in asymptotically anti-de Sitter spaces.
In the past few years these efforts have grown in scope and impact and have
focused on a comprehensive study of consistent non-linear Kaluza-Klein
compactifications of string and M-theory and studies of M-theory dynamics on
spaces with special holonomy, such as Spin(7) and G2, making forefront
contributions at the interface of differential geometry and formal M-theory.
Пример № 2. http://www.indiana.edu/~iubphys/faculty/ortizg.shtml
A great challenge of theoretical physics is understanding and modeling
interacting quantum many-body systems or quantum fields, and accurately
predicting properties and functionalities of matter from the fundamental laws of
quantum mechanics. My research work is in condensed matter physics and
quantum information science.
One of my main interests centers on the physics of strongly coupled
systems, which is one of today's most active research areas in condensed matter.
These systems happened to be strongly correlated since no obvious small coupling
constant exists, and consequently exhibit high sensitivity to small parameter
changes. My interest is fueled by the new states of matter such systems can
display and the exceptional material properties these phases sometimes exhibit.
The physics of high temperature superconducting materials, lanthanide and
actinide materials (often referred to as f-electron materials), quantum Hall systems,
etc. are cases in point. Indeed, the multiplicity of distinct and novel quantum
phases observed experimentally confront us with new paradigms that challenge our
understanding of the fundamental principles behind such complex phenomena. For
example, whether the mechanism controlling the coexistence and/or competition
between magnetism and superconductivity (or Bose-Einstein condensation) has the
same physical origin in different classes of materials is still an open question. This
complex phenomena exhibited by Nature exceeds our ability to explain them, in
part, because of a lack of appropriate mathematical tools to disentangle its
mysteries. From the theoretical viewpoint the hurdle is in the presence of nonlinear couplings, non-perturbative phenomena, and a panoply of competing
quantum orders. As a result, all possible phases of matter and their transitions
cannot (even approximately) be described within Landau's framework and new
physics concepts such as topological quantum order emerge.
The quest to explore the ultimate limits and principles of quantum physics is
out there. Quantum technologies are no longer a theorist's dream. For example,
commercial quantum cryptography devices have become available. I am interested
in studying foundational, software, and hardware aspects of quantum computation
and information. Because of the exciting recent development of new algorithms,
such as Shor's factoring and Grover's quantum search, that solve difficult problems
on a quantum computer using algorithms that would be impractical on a classical
computer, it is easy to overlook the fact that Feynman's original proposal for
quantum computers was for the purpose of solving quantum physics problems.
Simulation of physical phenomena using quantum devices is one of my areas of
research. I am also concerned with topics of potential overlap between my two
research disciplines, where feedback from one field may help to resolve significant
problems in the other. After all, a quantum computer is a quantum many-body
system. What are the concepts from quantum information that one can use to study
or predict phenomena in condensed matter physics? Similarly, what concepts can
be borrowed from condensed matter to quantify measures of information? These
are fundamental open questions. Designing and building a quantum computer or a
quantum simulator is a ultimate example of topics that meet the boundaries of both
disciplines. Cold atom physics is another.
Пример № 3. http://jfi.uchicago.edu/~william/index.html
My research interests are in the fields of experimental soft condensed
matter and theoretical and experimental "knotted fields". A common theme in my
research interests is the strong role played by geometry and advanced optical
techniques.
"Soft" is used to describe a rich variety of classical many-body systems that
have energetics accessible at room temperature and are large enough for their
constituents to be imaged, providing an ideal playground for the study of many
open questions in equilibrium and non-equilibrium many-body physics. Using
colloidal particles, (both spherical and shaped, fluids and foams), we are
investigating a variety of problems in ordered and disordered phases. A recent
focus has been on the use of curvature as a tool to probe structure in two
dimensions. In particular, we recently investigated the structure of twodimensional colloidal crystals frustrated by the Gaussian curvature of the curved
oil-water interface they are bound to. We are currently developing techniques to
extend these ideas to far from equilibrium processes in curved space.
To tie a shoelace into a knot is a relatively simple affair. Tying a knot
in a field is a different story, because the whole of space must be filled in a way
that matches the knot being tied at the core. The possibility of such localized
knottedness in a space-filling field has fascinated physicists and mathematicians
ever since Kelvin’s 'vortex atom' hypothesis, in which the atoms of the periodic
table were hypothesized to correspond to closed vortex loops of different knot
types. Recently I investigated some remarkably intricate and stable topological
structures that can exist in light fields whose evolution is governed entirely by the
geometric structure of the field. Open questions remain about the rules that govern
the topological structure of field lines, the possible states that can be created and
especially what happens when topologically nontrivial states are coupled to matter.
I am currently interested in exploring such structures in both light and `softer'
fields.
V. Контрольно-измерительные материалы
В рамках программы к данной дисциплине используется традиционная
система контроля.
Текущий контроль осуществляется в течение семестра в устной и
письменной форме в виде устных опросов и проектов. К проектной
деятельности относим:
- подготовку докладов, рефератов, создание аналитического обзора
собранной в Интернете информации;
- перевод с английского языка на русский современных текстов по уже
широко известным и новейшим достижениям в области физики в
международных СМИ.
Темы для докладов и рефератов
1.Научно-исследовательская работа в области физики в Кемеровском
государственном университете.
2.Ведущие
научно-исследовательские
центры
Сибири
(различных
центры
России
(различных
направлений физики).
3.Ведущие
научно-исследовательские
направлений физики).
4.Ведущие научно-исследовательские центры мира (различных направлений
физики).
5.Оформление необходимых документов на участие в зарубежных грантовых
программах.
6.Оформление необходимых документов для учебы, стажировки за границей.
7.Современные отечественные достижения в области физики.
8.Современные достижения зарубежных ученых-физиков.
9.Научные зарубежные интернет-ресурсы для физиков (по конференциям,
грантовым программам).
10.Большой адронный коллайдер.
11.Великие физики мира (от древности до наших дней).
12.Великие отечественные физики.
13.История развития физики как науки.
14.Физика на службе промышленности.
15.Физика в жизни и в быту человека.
16.Атомная энергия.
17.Развитие новых технологий и защита окружающей среды.
Примеры текстов, предоставляемых студентам для выполнения
перевода с английского на русский язык (полная подборка текстов на
перевод приведена в пункте IV Учебно-методические материалы).
Промежуточный контроль проводится в виде зачета в первом
семестре. Объектом контроля являются:
1) знания глоссария дисциплины (полный список терминов с
переводом приведен в разделе VI данного УМК),
2) умения и навыки по синтезу и анализу информации на иностранном
языке (проверка по выполнению рефератов, докладов и презентаций на
иностранном языке по темам, изучаемым в рамках данной дисциплины).
Итоговый контроль проводится в виде экзамена за весь курс обучения
иностранному языку в сфере профессиональной коммуникации. Объектом
контроля является достижение заданного программой уровня владения
общекультурными и профессиональными компетенциями.
Содержание экзамена за базовый курс обучения для магистров
на дневном отделении
1. Переведите текст на профессиональную тему объемом до 2500 печ. знаков
письменно со словарём (с английского языка на русский); время подготовки
45 мин.
2.
Передайте
(на
русском
языке)
общее
содержание
текста
на
профессиональную тему объемом до 1600 печ. знаков без использования
словаря; время подготовки 10 мин.
3. Сделайте сообщение на иностранном языке о своей научной работе (время
на подготовку не отводится). Примите участие в беседе с преподавателем на
профессиональную тему.
VI. Словарь терминов и персоналий // Сост. д. х. и. А. А.
Аскадский, к. х. н. Т. Л. Ренард, д. х. и. И. М. Паписов, к. х. н. Г. П.
Гончару, к. х. н. Т. М. Орлова, Т. В. Казанцева. – 1983 [Режим доступа]:
http://marata.narod.ru/literatura/ukazatel_terminov_po_fizike_i_fizikohimii_polimerov
ТЕРМИНЫ ПО ФИЗИКЕ И ФИЗИКО-ХИМИИ ПОЛИМЕРОВ
МЕХАНИЧЕСКИЕ СВОЙСТВА
1. Аномальная вязкость
MECHANICAL PROPERTIES
Anomalous viscosity
2. Антипластификация Antiplasticization
3. Восстановление высокоэластическое Rubbery recoil
4. Время запаздывания Retardation time
5. Время релаксации
Relaxation time
6. Высокоэластичность вынужденная
Forced rubbery elasticity
7. Высокоэластичность (текучих систем) Viscoelasticity (of flowing system)
8. Вязкоупругость
Viscoelasticity
9. Деструкция механическая Mechanical degradation
10. Деформация высокоэластическая
Rubber-like elastic strain
11. Деформация высокоэластическая равновесная
Equilibrium rubber-like
strain
12. Зависимость обобщенная Master curve
13. Запаздывание Retardation
14. Индекс расплава
Melt index
15. Коэффициент механических потерь или тангенс угла механических потер
Mechanical loss factor
16. Кривая термомеханическая
17. Кривая течения
Thermomechanical curve
Flow curve
18. Метод частотно-температурный Александрова-Лазуркина
Alexandrov
Lazurkin frequency-temperature superposition method
19. Механохимия Mechanochemistry
20. Модуль внутреннего трения
Modulus of internal friction
21. Модуль высокоэластичности
Rubber elasticity modulus
22. Модуль накопления Storage modulus
23. Модуль потерь
Loss modulus
24. Модуль упругости комплексный
Complex elastic modulus
25. Модуль эластичности равновесный
Equilibrium rubbery modulus
26. Наполнение Filling
27. α (альфа)-переход
α(alpha)-Transition
28. Переход вторичный (релаксационный )
Secondary transition
29. Переход основной релаксационный Primary (main) transition
30. Плато высокоэластическое
Rubber-like plateau
31. Поведение вязкоупругое Viscoelastic behavior
32. Податливость комплексная
Complex compliance
33. Податливость при ползучести Creep compliance
34. Ползучесть
Creep
35. Поправка выходная End correction
36. Последействие упругое
Elastic aftereffect
37. Предел вынужденной эластичности Yield point
38. Прочность долговременная условная Long-term strength
39. Разбухание экструдата
Swelling
40. Разрушение расплава
Melt fracture
41. Распределение времен релаксации
42. Реопексия
Rheореху
43. Сегмент механический
44. Серебрение
Relaxation time distribution
Mechanical segment
Crazing
45. Скорость релаксации напряжения
Stress relaxation rate
46. Скорость установившейся ползучести
Steady creep rate
47. Спектр внутреннего трения
Internal friction spectrum
48. Спектр времен запаздывания
Retardation spectrum
49. Спектр времен релаксации
Relaxation spectrum
50. Спектроскопия полимеров акустическая
Acoustical spectroscopy of
polymers
51. Стеклование Glass transition
52. Стеклование механическое
Mechanical glass transition
53. Стеклование структурное Structural glass transition
54. Степень вытяжки
Draw ratio (strain ratio)
55. Тело Бингама Bingham body
56. Тело вязкоупругое Viscoelastic body
57. Тело идеально-упругое
Ideal elastic body
58. Тело Кельвин-Фойхта
Kelvin-Voight body
50. Тело Максвелла
Maxwell body
60. Температура текучести
Flow point (temperature)
61. Температура хрупкости Brittleness point (temperature)
62. Теория высокоэластичности кинетическая Kinetic theory of rubberelasticity
63. Теория высокоэластичности статистическая
Statistical theory of
rubber elasticity
64. Теория вязкоупругости квазилинейная
Quasi-linear theory of
viscoelasticity
65. Теория вязкоупругости нелинейная
Non-linear theory of viscoelasticity
66. Теория вязкоупругости
Phenomendlogical theory of viscoelasticity
67. Течение химическое
Chemical flow
68. Тиксотропия Thixotropy
69. Упрочнение ориентационное
Orientation strengthening
70. Упрочнение релаксационное
Relaxation strengthening
71. Утомление
Fatigue
72. Фактор сдвига
Shift factor
73. Функция памяти (механическая)
Hereditary function
74. Шейка Neck
75. Эластичность по отскоку Rebound resilience
76. Энергия активации релаксации кажущаяся (эффективная)
Apparent
activation energy of relaxation
77. Ядро ползучести
Creep memory function
78. Ядро релаксации
Relaxation memory function
ДИЭЛЕКТРИЧЕСКИЕ СВОЙСТВА
DIELECTRICAL PROPERTIES
79. Время диэлектрической релаксации Dielectric relaxation time
80. Время ядерной спин-решеточной релаксации
Spin-lattice relaxation
time
81. Дипольный момент повторяющегося звена (эффективный)
Effective
dipol moment of molecular unit
82. Коэффициент диэлектрических потерь
Loss factor
83. Максимум диэлектрических потерь Maximum of dielectric losses
84. Поляризуемость полимера
Polymer polaryzability
85. Потери дипольно-радикальные Dipol-radical losses
86. Потери дипольно-сегментальные
Dipol - segmental losses
87. Потери диэлектрические Dielectric losses
88. Релаксация диэлектрическая
Dielectric relaxation
89. Спектр времен диэлектрической релаксации
Dielectric relaxation
spectrum
90. Тангенс угла диэлектрических потерьDielectric loss factor
91. Трек (образование следа) Tracking
92. Фактор диэлектрических потерь
Loss factor
93. Энергия активации дипольной поляризации
Activation energy of
dipole
94. Энергия активации диэлектрической поляризации
Activation energy
of dielectric polarization
ОПТИЧЕСКИЕ СВОЙСТВА OPTICAL PROPERTIES
95. Анизотропия сегмента
Segmental anisotropy
96. Градиент показателя преломления
97. Двойное лучепреломление
Refractive index gradient
Birefringence
98. Двойное лучепреломление в потоке Flow birefringence
99. Двойное лучепреломление при деформации
Stress birefringence
100, Индикатриса отражения.Indicatrix of reflection
101. Индикатриса рассеяния Indicatrix of diffusion
102. Инкремент показателя преломления Refractive index increment
103. Коэффициент оптической чувствительности по деформацииStrain-optical
coefficient
104. Коэффициент оптической чувствительности по напряжению
Stress-
optical coefficient
105. Полимеры оптически активные
Optically active polymers
ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА
THERMAL-PHYSICAL PROPERTIES
106. Анализ дифференциальный термический Differential thermal analysis
107. Закалка
Quenching
108. Морозостойкость Low temperature resistance
109. Отжиг Annealing
110. Пик плавления
Melting peak'
111. Температура размягчения по Вика Vicat softening point (temperature)
112. Температура размягчения по Мартенсу
Martens' softening point
(temperature)
113. Температура стеклования
114. Теплостойкость
Glass transition point (temperature)
Heat resistance
115. Теплостойкость при изгибе
116. Термостабильность
Heat deflection temperature
Thermal stability
СТРУКТУРА МАКРОМОЛЕКУЛ (MACRO) MOLECULAR STRUCTURE
117. Анизотропия макромолекулы Molecular anisotropy
118. Вес средневесовой молекулярный
Weight-average molecular weight
119. Вес средневязкостный молекулярной
Viscosity-average molecular
weight
120. Вес среднечисленный молекулярный
Number-average molecular
weight
121. Время спин-спиновой релаксации
Spin-spin relaxation time
122. Время ядерной спин- решеточной релаксации
time
Spin-lattice relaxation
123. Гибкость макромолекулы
Flexibility of macromolecule
124. Группы концевые End groups
125. Группы сиботактические
126. Дефекты цепей
Sibotactic groups
Chain defects
127. Деформация цепи афинная
Affinity chain deformation
128. Длина статистического сегмента
129. Длина цели контурная
Length of statistical segment
Contour length of chain
130. Жесткость макромолекулы
Macromolecular stiffness
131. Клубок гауссовый Gaussian coil
132. Клубок статистический Statistical coil
133, Константа спин-спинового взаимодействия
Spin-spin coupling
constant
134. Константа трения сегмента
Segment friction coefficient
135. Конфигурация макромолекулы
Macromolecular configuration
136. Конформация макромолекулы Macromolecaiar conformation
137. Конформация складчатая
Folded conformation
138. Коэффициент разветвленности
139. Масса молярная
Branching coefficient
Molar mass
140. Микроструктура Microstructure
141. Модель макромолекулы Chain model
142. Ориентация макромолекул
iMacromolecular orientation
143. Параметр полидисперсности Polydispersity parameter
144. Переход спираль-клубок Helix-coil transition
145. Плотность полимерной сетки Polymer network density
146. Плотность сшивки Cross -link density
147. Подвижность сегмента Segmental mobility
148. Полидисперсность Polydispersity (polymolecularity)
149. Полимер гребнеобразный
Comb-like polymer
150. Полимер звездообразный
Star -(-like) polymer
151. Полимер лестничный
Ladder polymer
152. Полимер разветвленный Branched polymer
153. Полимер с системой сопряжения
154. Полимер хелатный
Polyconjugated polymer
Chelated polymer
155. Радиус инерции среднеквадратичный
Mean-square radius of gyration
156. Разветвленность длинноцепная
Long -chain branching
157. Разветвленность короткоцепная
Short-chain branching
158. Размер цепи невозмущенный Unperturbed dimension of chain
159. Разнозвенность
[Raznozvennost]
160. Распределение молекулярно-весовое дифференциальное
Differential
molecular weight
161. Распределение молекулярно-весовое интегральное
Integral molecular
weight
162. Распределение последовательностей звеньев
Unit sequence distribution
163. Распределение по типам функциональности
Functionality (-type)
distribution
164. Расстояние между концами цепи
End -to-end distance
165. Расстояние между концами цени среднеквадратичное Mean -square endto-end distance
166. Сегмент кинетический Kinetical segment
167. Сегмент Куна
Kuhn segment
168. Стереорегулярность
Stereoregularity
169. Структура, циклическая Ring (cyclic) structure
170. Сшивание
Crosslinking
171. Фактор формы макромолекулы
172. Функциональность
Form-factor of macromolecule
Functionality
173. Функциональность ветвления Functionality of branching
174. Цепь макромолекулы основная
Backbone chain
175. Цепь макромолекулы персистентная Persistent chain
176. Цепь макромолекулы червеобразная Worm-like chain
177. Цепь свободносочлененная
Freely jointed chain
НАДМОЛЕКУЛЯРНАЯ СТРУКТУРА
178. Глобула
SUPERMOLECULAR STRUCTURE
Globule
179. Зацепление между молекулами
Entanglement
180. Коэффициент упаковки Packing coefficient
181. Кристалл полимерный из вытянутых цепей
182. Кристалл складчатый
Folded-chain crystal
183. Кристалл фибриллярный
184. Ламель
Fibrillar crystal
Lamella
185. Микрофибрилла
186. Мицелла
Extended-chain crystal
Microfibril
Micelle
187. Мицелла бахромчатая
Fringed micelle
188. Молекула проходная
Tie molecule
189. Морфология полимеров Polymer morphology
190. Ориентация кристаллов Crystallite orientation
191. Период складывания цепей
Period of chain folding
192. Пластификация внутриструктурная Molecular plasticization
193. Пластификация структурная Structural plasticization
194. Плотность макромолекулярного клубка
Macromolecular coil density
195. Полимер частично-кристаллический Semicryatslline polymer
196. Порядок ближний Short range order
197. Порядок дальний Long range order
198. Сетка вулканизационная Vulcanization network
199. Сетка полимерная пространственная
Three-dimensional network
200. Сетка флуктуационная Fluctuation network
201. Система коллоидная полимерная
Colloidal polymeric system
202. Состояние ориентированное Oriented state
203. Степень кристалличности
Degree of crystallinity
204. Структура гелеобразная Gel-like structure
205. Структура пачечная
Clustered structure
206. Структура пористая
Porous structure
207. Структура сетчатая
Cross linked structure
208. Структура упорядоченная
209. Структурирование
Structurization
210. Упаковка макромолекул
211. Фаза аморфная
Ordered structure
Packing of macromolecules
Amorphous phase
212. Фаза кристаллическая
Crystalline phase
ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА
PHYSICO-CHEMICAL PROPERTIES
213. Взаимодействие ближнего порядка Short-range interaction
214. Взаимодействие внутримолекулярное
Intramolecular interaction
215. Взаимодействие дальнего порядка Long-range interaction
216. Взаимодействие межмолекулярное Intermolecular interaction
217. Взаимодействие полимер-растворитель
218. Взаимодействие сегментальное
219. Вращение внутреннее
Polymer-solvent interaction
Segmental interaction
Internal rotation
220. Вращение заторможенное
Hindered rotation
221. Вязкость относительная Relative viscosity
222. Вязкость приведенная
Reduced viscosity
223. Вязкость удельная Specific viscosity
224. Вязкость характеристическая Intrinsic viscosity
225. Вязкость эффективная
Apparent viscosity
226. Гибкость цепи кинетическая Kinetic flexibility of chain
227. Гибкость цепи термодинамическая Thermodynamics flexibility of chain
228. Динамика полимерных систем молекулярная
Molecular dynamics of
polymer
229. Жесткость полимера
230. Жесткость цепи
Polymer stiffness (rigidity)
Chain rigidity
231. Качество растворителя термодинамическое
of solvent
Thermodynamic quality
232. Константа (параметр) Флори-Хаггинса
Flory-Huggins constant
(parameter)
233. Константы уравнения Марка-Куна-Хувинка
MarkKuho-Houwink
parameters (constants)
234. Коэффициент второй вириальный
Second virial coefficient
235. Коэффициент набухания макромолекулы Swelling coefficient of
macromolecule
236. Коэффициент поступательного трения макромолекул Viscous friction
coefficient
237. Макрорасслаивание
Macroseparation
238. Микрорасслаивание
Microseparation
239. Набухание Swelling
240. Набухание равновесное Equilibrium swelling
241. Область расслоения
Phaze separation area
242. Область смешиваемости Compatibility range
243. Объем исключенный
Excluded volume
244. Объем свободный Free volume
245. Объем смешения Mixing volume
246. Объем собственный
Occupied volume
247. Параметр взаимодействия
Interaction parameter .
248. Параметр растворимости
Solubility parameter
249. Параметр совместимости
Compatibility parameter
250. Переход I -го рода First-order transition
251. Переход II -го рода
Second-order transition
252. Переходы вторичные
Secondary transition
253. Подвижность внутримолекулярная Internal motion
254. Подвижность молекулярная полимеров
Chain motion
255. Растворимость взаимная полимеров Mutual solubility of polymers
256. Растворитель идеальный Ideal solvent
257. Растворитель плохой
Poor solvent
258. Растворитель Хороший Good solvent
259. θ -Растворитель
θ-solvent
260. Селективность растворителя Solvent selectivity
261. Совместимость
Compatibility
262. Состояние высокоэластическое
Rubbery state
263. Состояние вязкотекучее Viscous-flow state
264. Состояние стеклообразное
Glass state
265. Состояние физическое полимеров
Physical state of polymers
266. Статистика конфигурационная
Configurational statistics
267. Стеклование структурное
268. Студень
Structural glass transition
Gel
269. Температура растворения верхняя критическая Upper critical solution
temperature
270. Температура растворения нижняя критическая Low critical solution
temperature
271. Температура смешения верхняя критическая
Upper critical mixing
temperature
272. Температура смешения нижняя критическая
temperature
273. Температура текучести Flow temperature
274. θ (тета)-условия
θ (theta)-condition
275. Точка гелеобразовакия Gel-point
276. Точка помутнения Cloud-point
277. Фракционирование
Fractionation
Low critical mixing