* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Credits: Four - Selwyn College
Schrödinger equation wikipedia , lookup
Maxwell's equations wikipedia , lookup
Calculus of variations wikipedia , lookup
Euler equations (fluid dynamics) wikipedia , lookup
Itô diffusion wikipedia , lookup
Equation of state wikipedia , lookup
Derivation of the Navier–Stokes equations wikipedia , lookup
Equations of motion wikipedia , lookup
Navier–Stokes equations wikipedia , lookup
Schwarzschild geodesics wikipedia , lookup
Differential equation wikipedia , lookup
Name : ___________________________________ Selwyn College Level 1 Mathematics, 2009 90147 Use straightforward algebraic methods and solve equations. Credits: Four Answer ALL questions in the spaces provided in this booklet. You should show ALL working. Check that this booklet has pages 2 – 6 in the correct order and that none of these pages is blank. YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION. For Assessor’s use only Achievement Criteria Achievement Use straightforward algebraic methods. Solve equations. Achievement with Merit Use algebraic methods and solve equations in context. Overall level of Performance Achievement with Excellence Use algebraic strategies to investigate and solve problems. Page 2 of 6 You are advised to spend 30 minutes answering the questions in this booklet. ALGEBRA RULES You should show ALL working. QUESTION ONE a Factorise x 2 81 _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ b Jo knows 12 x 4 y 6 4x 2 y 2 2 m 3x y What is the value of m? _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ c Expand ( x 7)( x 10) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ Page 3 of 6 d Brent knows quadratic equations have two solutions. He solved the equation (x – 1) 2 = 81 and then claimed the solutions add to 1. Test Brent’s claim by solving the equation (x – 1) 2 = 81. _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ Page 4 of 6 e Rebecca and Louise live next door to each other. Their house numbers are consecutive (following) odd numbers and the sum of the squares of their house numbers is 202. Form and solve an equation to find the numbers on Rebecca’s and Louise’s houses. _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ Page 5 of 6 QUESTION TWO a Solve 17 = 4(x – 4) _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ b Solve 70x 20 90x 50 _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ c Solve (2x – 5)(x + 7)= 0 _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ d Gerald sold 150 tickets to the school show. Adult tickets, x, cost $10 and child tickets, y, cost $5. Gerald took $1200 altogether. Form and solve at least one equation to find the number of child tickets Gerald sold. _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ Page 6 of 6 e Here is a pattern designed by Max. Investigate the pattern, then form and solve an equation to find the number of the pattern which has 182 blocks in total. Pattern 1 Pattern 2 Pattern 3 _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________ _________________________________________________________________