Download Credits: Four - Selwyn College

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Schrödinger equation wikipedia , lookup

Maxwell's equations wikipedia , lookup

Calculus of variations wikipedia , lookup

Euler equations (fluid dynamics) wikipedia , lookup

Itô diffusion wikipedia , lookup

Equation of state wikipedia , lookup

Derivation of the Navier–Stokes equations wikipedia , lookup

Equations of motion wikipedia , lookup

Navier–Stokes equations wikipedia , lookup

Schwarzschild geodesics wikipedia , lookup

Differential equation wikipedia , lookup

Exact solutions in general relativity wikipedia , lookup

Partial differential equation wikipedia , lookup

Transcript
Name : ___________________________________
Selwyn College
Level 1 Mathematics, 2009
90147 Use straightforward algebraic methods and solve
equations.
Credits: Four
Answer ALL questions in the spaces provided in this booklet.
You should show ALL working.
Check that this booklet has pages 2 – 6 in the correct order and that none of
these pages is blank.
YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END
OF THE EXAMINATION.
For Assessor’s use only
Achievement Criteria
Achievement
Use straightforward
algebraic methods.
Solve equations.
Achievement with Merit
Use algebraic methods
and solve equations in
context.
Overall level of Performance
Achievement with
Excellence
Use algebraic strategies
to investigate and solve
problems.
Page 2 of 6
You are advised to spend 30 minutes answering the questions in this booklet.
ALGEBRA RULES
You should show ALL working.
QUESTION ONE
a
Factorise
x 2  81
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
b
Jo knows
12 x 4 y 6
 4x 2 y 2
2 m
3x y
What is the value of m?
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
c
Expand
( x  7)( x  10)
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
Page 3 of 6
d
Brent knows quadratic equations have two solutions. He solved the equation
(x – 1) 2 = 81 and then claimed the solutions add to 1.
Test Brent’s claim by solving the equation (x – 1) 2 = 81.
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
Page 4 of 6
e
Rebecca and Louise live next door to each other. Their house numbers are
consecutive (following) odd numbers and the sum of the squares of their
house numbers is 202.
Form and solve an equation to find the numbers on Rebecca’s and
Louise’s houses.
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
Page 5 of 6
QUESTION TWO
a
Solve 17 = 4(x – 4)
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
b
Solve 70x  20  90x  50
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
c
Solve (2x – 5)(x + 7)= 0
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
d
Gerald sold 150 tickets to the school show.
Adult tickets, x, cost $10 and child tickets, y, cost $5.
Gerald took $1200 altogether.
Form and solve at least one equation to find the number of child tickets Gerald
sold.
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
Page 6 of 6
e
Here is a pattern designed by Max.
Investigate the pattern, then form and solve an equation to find the number of
the pattern which has 182 blocks in total.
Pattern 1
Pattern 2
Pattern 3
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________
_________________________________________________________________