* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Advances in Artificial Intelligence Require Progress Across all of
Machine learning wikipedia , lookup
Human-Computer Interaction Institute wikipedia , lookup
History of artificial intelligence wikipedia , lookup
Knowledge representation and reasoning wikipedia , lookup
Wizard of Oz experiment wikipedia , lookup
Computer vision wikipedia , lookup
Human–computer interaction wikipedia , lookup
AdvancesinArtificialIntelligenceRequire ProgressAcrossallofComputerScience February2017 GregoryD.Hager,RandalBryant,EricHorvitz,MajaMatarić,andVasantHonavar Overthelastdecade,theconstellationofcomputingtechnologiesreferredtoas artificialintelligence(AI)hasemergedintothepublicviewasanimportantfrontier oftechnologicalinnovationwithpotentialinfluencesinmanyrealms.Advancesin manydisciplinesrelatedtoAI,includingmachinelearning,robotics,computer vision,naturallanguageprocessing,inference,decision-making,andplanning,are contributingtonew-fieldedproducts,services,andexperiences.Offeringssuchas navigationsystems,websearch,speechrecognition,machinetranslation,face recognition,andrecommenderengineshavebecomepartofthedailylifeofmillions ofpeople.Otherapplicationscomingtotheforeincludesemi-autonomousand autonomousgroundandairvehicles,systemsthatharnessplanningandscheduling, intelligenttutoring,robotics.Morebroadly,cyber-physicalandroboticsystems, incorporatingvaryingdegreesofAItechnology,arepoisedtobefieldedinavariety ofreal-worldsettings. AlthoughAIwillbeanengineforprogressinmanyareas,creatingreal-world systemsthatrealizetheseinnovationswillinfactrequiresignificantadvancesin virtuallyallareasofcomputing,includingareasthatarenottraditionallyrecognized asbeingimportanttoAIresearchanddevelopment.Indeed,weexpectfutureAI systemswillnotonlydrawfrommethods,tools,andthemesinotherareasof computerscienceresearch,butwillalsoprovidenewdirectionsforresearchin areassuchasefficiency,trustworthiness,transparency,reliability,andsecurity. Thisisnotnew–thehistoryofAIisinextricablyintertwinedwiththehistoryof advancesinbroadercomputerscience(CS)aswellasapplicationsinrelatedareas suchasspeechandlanguage,computervision,robotics,andothertypesof intelligentsystems. Inwhatfollows,wereviewseveralpromisingareasofinteractionbetweenAIand broadercomputersciencethatproviderichopportunitiesaheadforresearchand development.WeincludeopportunitiesthatseemespeciallyimportantasAI systemsbecomemoreubiquitousandareplayingrolescriticaltoourindividualand combinedhealthandwell-being.Inbrief,weseeparticularlyrichopportunitiesfor supportingadvancesinAIviasynergiesandcollaborationwithresearchand developmentinthefollowingareas,describedbrieflybelow,thenfurtherexpanded upon: 1 Computingsystemsandhardware.Thereareopportunitiesaheadforleveraging innovationsincomputingsystemsandhardware.Directionsincludethe developmentofmethodsforspeedingupcorecomputationalproceduresemployed inAIsystems,suchasthemethodsusedtotrainandtoexecuteclassificationfor perceptualtasksusingconvolutionalneuralnetworks.Opportunitiesincludenew approachestoparallelism,smartcaching,andusesofspecializedhardwarelike FPGAstolowercostsofcomputationandtomeetthedemandsandrobustness neededwithAIapplications. Theoreticalcomputerscience.AIwasbuiltontheoreticalworkbasedonthe mathematicsofcomputabilityintheearly20thcenturybyTuring,Church,and others.AIchallengeshavelongposedandfacedcombinatorialchallengesandhas madeuseofresultsontheperformanceandprecisionofapproximationprocedures. TherearecontinuingopportunitiesfortheformalstudyofhardchallengesinAI withtoolsandtechniquesdevelopedintherealmsofanalysisofalgorithms, includingeffortsincombinatorics,computationalcomplexitytheory,andstudiesof computability. Cybersecurity.AIsystemsarebeingdevelopedforhigh-stakessystemsinsuch areasashealthcareandtransportation.Thesesystemsarealsobringingtothefore newattacksurfacesthatneedtobeunderstoodandprotected.Directionsinclude understandingandhardeningsystemstowholenewcategoriesofattackincluding, “machinelearningattacks,”wherecleveradversarialproceduresareemployedto injectdataintosystemsthatwillconfuseorbiasthemintheirintendedoperation. AIsystemsframenewchallengesthatwillrequireadvancesinsecuritythataddress thenewattacksurfacestoensurethattheyaresafe,reliable,robustandsecure againstmaliciousattacks. Formalmethods.Formalmethodscanplayacriticalroleindefiningand constrainingAIsystems,soastoensurethattheirbehaviorconformsto specifications.Effortsincludemethodsfordoingformalverificationofprogramsand alsotoperformreal-timeverificationofsystemsthroughnewkindsofmonitoring. Formalmethodsarepromisingapproachestoensuringthatprogramsdonottake actionsbeyondspecifiedgoalsandconstraints. Programminglanguages,tools,andenvironments.Newprogramminglanguages, tools,andprogrammingenvironmentscanhelpengineerstobuild,test,andrefine AIsystems.Higher-levellanguagescanofferengineersandscientistsnewkindsof abstractionsandpowertoweavetogethermultiplecompetencies,suchasavision, speechrecognition,andnaturallanguageunderstandingsoastobeabletodevelop anddebugprogramsthatrelyontheclosecoordinationofmultipleAIanalytical pipelines. Human-computerinteraction.ThekeychallengeswithAIframenumerous opportunitiesinthebroadrealmofresearchinhuman-computerinteraction(HCI), animportantareaofcomputerscienceresearch.Effortsincludemethodsfor 2 explainingtheresultsofAIsystemstopeople,allowingpeopletoworkinteractively withAIsystems(e.g.,interactivemachinelearning),thathelpwiththespecification, encoding,andunderstandingoftheimplicationsofdifferentpolicies,values,and preferencesassumedbyautomatedsystems,andsupportingnewkindsofhuman-AI collaboration,includingmixed-initiativeinteractionandaugmentinghuman cognition. ComputingSystemsandHardware Researchincomputerhardware,operatingsystems,andcomputernetworkinghave been,andcontinuetobe,criticaltocreatingthelarge-scalesystems,includingAI systemsthatusevastamountsofdatatobuildpredictivemodels,optimizecomplex objectivefunctions,performautomatedinferenceoverlargeknowledgebases,or complexprobabilitydistributions.Someofthelargestcomputerfacilitiesinthe worldareoperatedbyindustrialandgovernmentorganizationstocollectdata, buildpredictivemodelsfromdatausingmachinelearningalgorithms,andthenuse theresultingpredictivemodelstoprovideservicesrangingfromdrivingdirections toshoppingrecommendations. AsAIcontinuestogrow,thedemandsonthesesystemswillalsogrowandchange. Forexample,currentusesofcloudcomputingaretypicallynothardreal-time. Whetherasearchqueryisansweredin0.2sor0.4smaynotmattermuchin practice.However,aqueryfromacarmovingat60mphmayneedtobeanswered withinahardreal-timeconstrainttoensurethesafeoperationoftheautomobile. Historically,specialpurposehardwarearchitecturesforspecifictaskse.g.,computer vision,havebeeninandoutoffashion.However,asweapproachtheendofthe Moore’slaw,performancegainsthatarerequiredforsuccessfuldeploymentofAI systemsinreal-worldapplicationsarelikelytorequireinnovationsinhardwareand systemsaswellasco-designofhardwareandsoftwaretoexploitthespecial featuresofspecializedarchitecturesandsystems.Largeserversystemsalreadyuse GPUsextensivelytosupportmodernlearningalgorithms.Atscale,itmaybecome costandenergyefficienttoincludeevenmorecustomizedcapabilitythatmustbe sharedamongonetoamillionusersdependingonthesysteminquestion. Unlikemanycomputingtasks,machinelearningcanoftenmakeuseofapproximate results.Theymakedecisionsusingstatisticalmodelsandtherecanbeatolerance forsmallcomputationalerrorsintroducedbythehardwareorbyimperfect synchronizationacrosscomputingresources.Thisopensupmanypossibilitiesfor makingthesystemmoreenergyefficientorscalableatthehardware,software,and systemlevels.Achievingthesebenefitswillrequireacarefulcharacterizationofthe natureofthecomputationalerrorsthatcanbeintroducedandtheirimpactonthe overallsystemfunctionality. TheoreticalCS:AnalysisofAlgorithms,Combinatorics,andComplexity 3 AIhasinfluenced,andbenefitedfrom,advancesinalgorithmsinanumberofareas includingautomatedreasoning,search,planning,optimization,andlearning.For example,machinelearning,whichliesattheheartofmanymodernAIsystems, enablesGoogle’sAlphaGoprogramtodevisestrategiesforplayingthegameofGoby analyzingmillionsofmovesmadebyhumansinGotournaments;Amazon’s recommendersystemstoanalyzelargedatasetsoftransactionsandthensuggest productstocustomers;automobilelanetrackingsystemstodetectlanemarkers fromvideoimagesandwarndriverswhentheyareveeringoutoftheirlanes; languagetranslationsystemstogeneratemappingsfromonelanguagetoanotherby processinglargecollectionsofhuman-generatedtranslations.Machinelearning requiresalgorithmsthatconstructsophisticatedpredictivemodelstoofferuseful insightsandactionableknowledgefromlargeandcomplexdatasets.Thedemands ofmachinelearninghasledtoadvancesinalgorithms,especiallyforoptimizationof complexobjectivefunctions,reasoningaboutcomplexprobabilitydistributionse.g., usingfactorizedrepresentations,etc.Withtheemergenceofbigdata,the requirementthatmachinelearningalgorithmsneedtobescalabletomassive amountsofhighdimensionaldata,robustinthepresenceofnoise,etc.,present manychallengesindesignandanalysisofalgorithms. Similarly,AIsystemsforplanning(e.g.,motionplanning,dialogplanning,and activityplanning)callforadvancesindatastructuresandalgorithmsfor representingandreasoningaboutlargestatespaces,copingwithuncertainty,and providingcompactrepresentationsthatsupportefficientaccesstodata.The emergenceoflargeknowledgebasesthatcodifyhumanknowledgeinavarietyof domainscallsforrobustalgorithmsforautomatedinference;forexample,for answeringcomplexqueriesagainstknowledgebases.Manyproblems,including assemblingproductsthatmeetspecifiedrequirementsfromavailablecomponents, canbeformulatedasproblemsinsearchoroptimization,andhence,candrive advancesinconstraintprocessingandoptimization.AIsystemsforcomputervision, naturallanguagedialogue,textprocessing,videoanalytics,andothertaskscan similarlydriveinnovationsinalgorithms. ThesuccessofAIinreducingmoreandmoretasksthatwerethoughttorequire humanintelligenceintoonesthatcanbesolvedalgorithmicallywillstimulatework onestablishingthecorrectness,performancebounds,andthetrade-offsamong them.Thiswillhaveimmediatepracticalconsequences,aswillnegativeresultsthat establishthetheoreticallimitsofalgorithms.Suchinvestigationscanleadto importantinsights,forexamplewhetherataskislearnableinprinciple,inpractice, andunderwhatconditions,suchas,fromobservations,queries,orexperimentation. Ensuringrobustoperationwillrequirefindingboundsonthepotentialdeviationsof anAIsystemwhenpresentedwithunanticipatedinputs. Cybersecurity InadditiontothemanybenefitscomputertechnologyandtheInternetprovide society,ithasprovedtobeapowerfultoolforadversaries,includingmalicious 4 individuals,criminals,andnationstates.Attackersuseanumberofmethodsto extractsensitiveinformationfromorganizationsandtodisableordisruptthe activitiesofindividuals,corporations,andgovernment. AIsystemshavevulnerabilitiesthatincludethoseofbothtraditionalandnew computersystems.Forexample,bycorruptingthetrainingdata,anAIsystemcanbe trickedintoconstructinganinvalidpredictivemodel.Giventhelimitedmechanisms currentlyavailablefortestingthesemodelssuchcorruptionmaybedifficultto detect. AsAIsystemsaredeployedintherealworld,adversarieswillseekwaystotrick themintobehavinginundesirableways.Forexample,imagineattemptingtodeploy anautonomousarmoredtruck.Adversarieswouldbehighlymotivatedtoforceitto stoportoalteritscoursebyputtingthetruck’scontrolsystemoutsidetherangeof conditionsithasbeentrainedtoconsider.Indeed,suchlimitationswillimpedethe deploymentofAIsystemsinsecurity-criticalenvironments. AIcanalsoprovideapowerfultoolforbothcyberattackersandcyberdefenders.On theattackside,anetworkofbotnetscouldusereal-timedataanalyticsto dynamicallyadapttheirbehavior,increasingtheireffectivenessanddiminishing theirdetectability.Conversely,machinelearningisalreadyprovidinganeffective toolfordetectinganomaliesincomputersystemsthatcouldindicateanintrusion. Hence,increasingrelianceonAIsystemsasintegralcomponentsofcomplex systems,callsforadvancesincybersecurity. FormalVerification Computersystemsoftenfailduetoerrorsinthedesignorimplementationofits hardwareandsoftware.Sometimes,suchfailures,suchasthelossofanimportant file,whileannoying,areofnomajorconsequence.Butwhencomputersdirectly controlcriticalsystems,suchasmedicaldevices,civilinfrastructure,anddefense systems,consequencesoffailuresaremuchmoresevere.Hence,weneedtoolsfor ensuringthatsoftware,particularly,complexAIsoftware,complywith specifications. Formalverificationtoolsprovidewaystotestthecorrectnessandhardwareand softwareunderallpossibleoperatingconditions.Theygobeyondthetraditional methodoftestingthesystemonmanydifferentindividualcasestoconsiderall possiblecases.Suchtoolshavehadsignificantsuccesswithpurelydigital computations.Forexample,Inteltookalossof$475millionwhenthefirstversion ofitsPentiumprocessorcould,underveryrarecircumstances,producethewrong resultwhendividingtwonumbers.Theysubsequentlydevelopedasetoftoolsto ensurethecorrectnessoftheirarithmeticcircuitsforallpossibledata.Similarly, othercompanieshavedevelopedanddeployedtoolsthatcandetectmanyclassesof softwareerrors. 5 However,establishingthecorrectnessofcomputersystemsthatoperateinthe physicalworld–eithersystemswhoseperformancedependsonthedatathatthey weretrainedon,asinthecaseofAIsystemsthatrelyonmachinelearning,or systemsthatneedtooperateinopenenvironmentsthatarehard-to-characterize (e.g.,householdrobots,automatedvehicles,etc.)–ismuchmoredifficult.For example,itisimpossibletoanticipateallofthesituationsanautonomousvehicle mightencounter,muchlessguaranteethatitwillhandleeachsuchsituation correctly.Ontheotherhand,itmaybepossibletouseformalverificationtechniques toverifythatAIsystemswillconformtospecificboundsontheirperformancein suchenvironments. ProgrammingLanguages RapiddevelopmentofcomplexAIsystemscallsforadvancesinprogramming languagesandtools.Ofparticularinterestaredomain-specificprogramming languageswithbuilt-inhighlevelabstractionsthatmakeiteasytodesignand programAIsystemsforclassesofapplicationse.g.,naturallanguageprocessing, computervision,multi-robotsystems.Alsoofinterestarenewprogramming languagesthatsupportprobabilisticcomputations,large-scaleautomatedinference, constraintprocessing.,etc. Machinelearningalsoprovidesaninspirationforanewconceptionof programming.Withthesesystems,thehumanprogrammerscreateaframeworkfor howthesystemshouldoperate,buttheactual“program”,suchastheweightsthat specifythedetailedconfigurationofaneuralnetwork,isderivedalgorithmicallyby trainingthesystemoverlargeamountsofdata.Onecanimagineafutureinwhich evenhigherlevelsofautomationareappliedtoconstructmuchofwhatisdoneby humanprogrammerstoday. Human-ComputerInteraction AIwillrevolutionizethetypeofresearchthatcanandmustbedonetoenable peopletoeffectivelyuse,understand,interactandco-existwithAIsystems.Topick oneexample,todaymostvoicequeriesareeitherdictationofamessageororder,or aone-timequery.FutureAIsystemswillneedtoengageinbroaderformsofdialog todealwithambiguity,confusion,ortoimproveengagement.Withtheincreasing adoptionofAIsystems(e.g.,automatedvehicles,robots,softwareassistants,inrealworldenvironments)thereisanincreasingneedforresearchonframeworks, languages,abstraction,andinterfacesthatalloweffectivecommunicationand interactionbetweenhumansandAIsystems. Ofparticularinterestaremixedinitiativesystemsthatallowproductive collaborationsamongAIsystems,humansandAIsystems,aswellasamong humans,withmediationandfacilitationbyhumansorAIsystemsasneeded.AI 6 systemsmustengagewithhumansinacollaborativemanner,allowingpeopleto workinteractivelywithAIsystems(e.g.,interactivemachinelearning),thathelp withthespecification,encoding,andunderstandingoftheimplicationsofdifferent policies,values,andpreferencesassumedbyautomatedsystems,andsupporting newkindsofhuman-AIcollaboration,includingmixed-initiativeinteractionand augmentinghumancognition. Thus,ascapabilitiesinAIgrow,sotoowillthequestionsandopportunitiesto connectAItopeopleinameaningfulandeffectiveway. InConclusion ThereisagrowingandcompellingimperativetoleveragetheadvancesinAIand automationtoimprovehumanlivesinmanyways.Atthesametime,suchsystems willalsobecomefarmorepresentandconsequentialtoeverydaylife,andwill provideservicesandcapabilitiesthatwillexploitlargeamountsofdata(including personaldata),controlphysicaldevicesofvariouskinds,includingdevicesinsafety criticalareas,andbeempoweredtomakeandactondecisionsofvarying importancethatcouldinfluenceindividualsandsocietiesinexplicitandimplicit ways. Thepathtowardabalancedportfolioofcapable,safe,andtransparentAI-based systemswilldrawonabroadspectrumofcomputingideasandprinciples,andis likelytobecomeadriverfornewadvancesincomputing.Byembracingthepromise ofAI,webelievethatmanyareasofcomputersciencewillnotonlybeadvanced,but willalsoallowAItoaddressimportantopportunitiesanddosoinawaythatissafe, reliable,andeffective. ThismaterialisbaseduponworksupportedbytheNationalScienceFoundationunder GrantNo.1136993.Anyopinions,findings,andconclusionsorrecommendations expressedinthismaterialarethoseoftheauthorsanddonotnecessarilyreflectthe viewsoftheNationalScienceFoundation. 7