Download Chapter 29 Homework

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
AP Biology TPHS, Rall/Olson
Chapter 29 Homework
Plant Diversity I: How Plants Colonized Land
1. What is the evidence for the evolution of land plants from green algae? (list AND describe them)
2. In your own words describe what challenges and what benefits there were to the first plants living on land.
3. What are the 5 key traits found in nearly all land plants? (List them AND describe/explain them—you will need to
read and use pages 576-577 also).
4. Using figures 29.8 and 29.12 answer the following questions:
a. Describe what a haploid moss plant looks like.
Describe what a diploid moss plant looks like.
b. Describe what a haploid fern plant looks like.
Describe what a diploid fern plant looks like.
c. Are the spores of moss n or 2n? Are the spores of ferns n or 2n?
d. Where is the archegonium in a moss?
e. Where is the archegonium in a fern?
5. How are both the moss and fern life cycles excellent examples of Alternation of Generations within the plant
kingdom?
6. Why aren’t mosses considered among the group of seedless vascular plants?
Chapter 30 Homework
Plant Diversity II: The Evolution of Seed Plants
1. a. Complete the following table:
Describe (and/or sketch) the gametophyte of each of the following plant types:
bryophytes
(such as moss)
seedless vascular plants
(such as ferns)
gymnosperms
(conifers)
angiosperms
(flowering plants)
b. What is meant when the book says that gametophyte reduction was the evolutionary trend?
c. Explain why gametophyte reduction was beneficial (use the text as well as fig. 30.2).
2. a. What is heterospory?
b. Give an example of heterospory as seen in seed plants (gymnosperms or angiosperms)
3. What are at least 3 evolutionary advantages of seeds?
4. List at least 5 differences between angiosperms and gymnosperms. (use the text and the figures to help you)
5. a. Using fig 30.10 describe the 2 cells within a pollen grain (male gametophyte) AND their functions
during pollination and fertilization.
b. What is double fertilization?
c. Using fig 30.10 describe the 7 cells within a female gametophyte and describe what they will
become after fertilization.
AP Biology TPHS, Rall/Olson
6. Briefly describe the differences between monocots and eudicots.
7. a. Define coevolution.
b. Describe an example of an animal and an angiosperm that demonstrate coevolution.
Chapter 35 Homework
Plant Structure, Growth, and Development
read the whole chapter
1. This chapter calls roots, stems, and leaves organs. What are the main functions of each of these organs?
ORGANS
roots
Main functions
stems
leaves
2. There are three tissue systems in plants: dermal, vascular, and ground. Define and give an example of each:
Plant Tissues
Definition
Example
dermal
vascular
ground
3. Define primary growth and use the term ‘apical meristem’ in your definition (fig 35.18 may be helpful).
Define secondary growth and use the term ‘lateral meristem’ in your definition (fig 35.18 may be helpful).
4. What are guard cells and why are they important for photosynthesis? and why are they important for the overall
health of a plant?
5. What are the following functions of these leaf structures? (fig 35.17 may help)
Leaf structures
cuticle
palisade
mesophyll
spongy
mesophyll
sclerenchyma
fibers (see p.
718)
bundle sheath
vein
Functions
AP Biology TPHS, Rall/Olson
6. Define vascular cambium and explain where it is found.
What is the function of vascular cambium?
7. Read the text within figure 35.24. How does this figure relate to the real plants shown in fig. 35.25?
Chapter 36 Homework
Transport in Vascular Plants
Read the whole chapter
1. a. Using figure 36.2 define transpiration.
b. Explain how transpiration affects water and mineral transport through the stem and into roots. (figs 36.2
and 36.13 may help)
2. Why are sugars transported down the stem in the tree in figure 36.2? (Use the information from figures 36.18 and
36.19 to help you answer this.)
3. a. Sketch and
b. Explain how and why guard cells change shape, thereby allowing the stomata to open or close.
4. Using as many vocabulary terms as possible (from Ch.36) describe the path that a CO2 molecule takes as it enters
the plant during daylight (through an open stomate), is transported within the plant, is assimilated into a sugar molecule
(via photosynthesis), then transported within the plant (as a sugar molecule), and lastly, during respiration, as the sugar
is catabolically broken back down into CO2 and then eventually leaves the plant (via an open stomate). Try to name
specific parts of the plant and name/describe the various processes within the plant.
5. Define water potential.
6. Water moves from a region of higher Ψ(water potential) to a region of lower Ψ. How is the definition of water
potential different from just plain old osmosis that we already learned about?
Chapter 37 Homework
Read/review p. 771-780 (from angiosperm lab)
Read pages 781-786 this is very interesting and current in the latest biology news but will not be directly tested.
1. Look at the various essential plant elements in Table 37.1, explain why too much water could be harmful to soil that is
initially rich in these elements and minerals (remember that water is polar). (pages 759-762 may help you if you are not
sure of this question)
Chapter 38 Homework
Read pages 756-759, p.768, (review mycorrhizae, nitrogen fixation and root nodules)
1. How do the “pin” and “thrum” flower types reduce self-fertilization? (fig 38.5)
2. a.
b.
c.
d.
Sketch the bean seed from fig 38.8 and label the parts.
What was the definition of a seed? (from ch 30)
The light brown shading on this seed is the endosperm. Why is most of the seed endosperm?
What is the radicle part of the seed?
3. See figure 38.10(a). What is the hypocotyl?
Chapter 39 Homework
Plant Responses to Internal and External Signals
Read the whole chapter
AP Biology TPHS, Rall/Olson
1. a. What is the biological definition of a hormone?
b. Read through the two scientific studies (figures 39.5 and 39.6). Auxin is the hormone that is
indirectly described in both of these studies.
What does auxin do and why is auxin considered a hormone?
2. Know Table 39.1.
Write out a simplified definition or mnemonic that will help you remember the name of the hormone and its major
function(s).