Download 17-PN-Junction

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Switch wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Islanding wikipedia , lookup

Electrical ballast wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Power engineering wikipedia , lookup

Thermal runaway wikipedia , lookup

Mercury-arc valve wikipedia , lookup

Electrical substation wikipedia , lookup

Three-phase electric power wikipedia , lookup

TRIAC wikipedia , lookup

History of electric power transmission wikipedia , lookup

Transistor wikipedia , lookup

Rectifier wikipedia , lookup

Triode wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Voltage regulator wikipedia , lookup

Shockley–Queisser limit wikipedia , lookup

Power electronics wikipedia , lookup

Current source wikipedia , lookup

Power MOSFET wikipedia , lookup

Ohm's law wikipedia , lookup

Stray voltage wikipedia , lookup

Surge protector wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Diode wikipedia , lookup

Voltage optimisation wikipedia , lookup

Opto-isolator wikipedia , lookup

Alternating current wikipedia , lookup

Buck converter wikipedia , lookup

Mains electricity wikipedia , lookup

Transcript
LA BO RATORY WR I TE -U P
PN -J U N C TION
AUTHOR’S NAME GOES H ERE
STUDENT NUMBER: 111 -22-3333
PN-JUNCTION
1 . P U R P OS E
The purpose of this experiment is to measure the voltage-current characteristics of a
germanium diode and the way in which these characteristics vary with temperature. From
these measurements, it will be possible to obtain a value for the energy gap in germanium
and an order of magnitude estimate of Boltzmann's constant.
At room temperature, an n-type semiconductor (e.g. germanium doped with arsenic) has
electrons available for conduction whose energies lie in the conduction band. Conversely in
a p-type semiconductor (e.g. germanium doped with gallium), conduction is by "holes"
(vacancies due to missing electrons) in the valence band. When two such semi-conductors
are joined to form a p-n junction, electrons will diffuse from the n to p side and holes from
the p to n side provided they have enough energy to overcome the potential "hill". The net
diffusion current is
(1)
I d  I ed  I hd  C1eeVJ / kT
where VJ is the voltage across the junction and C1 is a constant, see Fig. 1. Because of this
current, the p-side of the junction becomes negatively charged and the n-side positively
charged. This results in a strong electric field pointing from the n- towards the p-side.
eVJ
eVg
Fig. 1 Energy band diagram for a p-n junction
Also electron-hole pairs are being thermally generated in both p and n regions with a
 eV / kT
probability e g , where eVg is the energy gap between the valence and conduction bands.
2
The electric field, mentioned above, will cause the holes in the n-side to flow towards the pside and electrons from the p- to n-side. This constitutes an "equilibrium current",
I 0  I eo  I ho  C2 e
 eVg / kT
(2)
e(VJ+V)
e(VJ-V)
a)
b)
Fig. 2 Effect of a) reverse voltage and b) forward voltage
At equilibrium, Id = Io, leading to
e
 e(VJ Vg )/ kT
 constant
(3)
If an external voltage, V, is applied to the junction, with the p-side positive, the situation will
be as shown in Fig. 2b. The diffusion current will be increased by a factor
ee(VJ V )/ kT / eeVJ / kT , and the net "forward current" is
I f  I d eeV /kT  I 0  I 0 (eeV /kT 1)
(4)
Similarly if the external voltage is reversed, the net "reverse current" is
I r  I 0 (1  eeV / kT )
(5)
Both (4) and (5) may be written as a single equation
I  I 0 (1  eeV / kT )
(6)
where I represents the current from the p-side to the n-side and V is positive when it
represents the forward voltage and negative for the reverse voltage.
3
2 . P R OC E D U R E
a) Forward and reverse characteristics at room temperature:
Turn on the temperature control unit and set the temperature switch to 25 oC. The power
supply for the p-n junction has two independent outputs and two independent voltage
control knobs for forward and reverse operation respectively. Connect the leads from the
junction to the "FWD VOLT" output jacks, matching red to red and black to black. Set
the switch on the front panel to "FWD". Turn both knobs fully anticlockwise and switch
on the unit. When the temperature has stabilized at 25 oC, take a series of current readings
for voltages of 0.20, 0.22, 0.24, .... 0.30, 0.35, 0.40, 0.50, 0.60, .... 1.0 V. The digital display is
in amps. Turn the knob back to zero and switch off the power supply. Now connect the
junction leads to the "REV VOLT" output jacks red to black and black to red. Set the
switch on the front panel to "REV" and switch on the unit. Record the current for voltages
of 0.2, 0.4, .... 1.0, 2.0, 5.0, 10.0, 15.0, .... 40.0 V. The digital display is now in microamps.
b) Variation in reverse current with temperature:
Set the reverse voltage at 10 V and record the current. Set the temperature switch to 75 oC
and record the current every 5 oC as the junction warms up. You will probably find the
current reading goes off scale at around 65 oC.
c) Forward characteristic at 75oC:
Switch off the power supply and reset the system for applying forward voltages. When the
temperature has stabilized at 75oC, determine the forward characteristic only as in part a).
3 . C A L C U L A T I ON S
To illustrate the rectifying properties of a junction diode, plot graphs of current (ordinate) vs
voltage (abscissa) for both the forward and reverse conditions at 25oC.
From equation (6), ln (1 + I/Io) = eV/kT. Since I/Io is >> 1 over the range of forward
measurements, ln I - ln Io  eV/kT. At a given temperature, Io is a constant and so a graph
of ln I vs V has a slope of e/kT. Plot such a graph showing the forward characteristics at
both 25 and 75 oC and use the slopes to determine Boltzmann's constant. (Note that T is in
kelvin.) In practice, the measured voltage includes that across the bulk of the semiconductor
as well as contact potentials where the metal wires are joined to the semiconductor. The
latter to is small and the effects of the former can be minimized by taking the slope at small
currents where the product iR will be small. You can still expect get only an order of
magnitude estimate for k.
Also from equation (6),it may be noted that for reverse voltages, V, of –1 Volt or more,
|I| Io. This is the "reverse saturation current" measured in section b) which should have
changed little with voltage. From equation (2), ln Io = ln C2 – eVg/kT. Using the data in part
b), plot ln Io (ordinate) vs 1/T (abscissa) [T in kelvin]. Using the accepted value of
Boltzmann's constant, obtain the energy bandgap, eVg, for germanium plus the error.
4