Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Elgin Academy Mathematics Department Higher Unit 3 Revision Please do not write on these sheets. Return this booklet to your teacher when you are finished with it. Good Luck. Outcome 1 Use vectors in three dimensions. PC(a): Determine whether three points with given coordinates are collinear. Example S, T and V have co-ordinates (1, 3, 4), (5, 5, 6) and (17, 11, 12) (i) Write down the components of SV . 17 1 16 SV v s 11 3 8 12 4 8 Hence show that the points S, T and V are collinear. 4 ST t s 2 since SV 4 ST then SV is parallel to ST 2 (ii) But S is a common point, so S , T and V are collinear. Exercise 1 1. A, B and C have co-ordinates (2,-3,4), (10,5,0) and (12,7,-1) (i) (ii) Write down the components of AC . Hence show that the points A, B and C are collinear. 2. D, E and F have co-ordinates (1,3,-4), (9,-1,0) and (3,2,-3) (i) Write down the components of DF . (ii) Hence show that the points D, E and F are collinear. 3. P, Q and R have co-ordinates (3,-2,0), (2,1,5) and (0,7,15) (i) Write down the components of PR . (ii) Hence show that the points P, Q and R are collinear. PC(b): Determine the coordinates of the point which divides the join of two given points internally in a given numerical ratio. Example The point D divides XY in the ratio 3:2 as shown in the diagram. Find the coordinates of D. Y(6, -4, 11) D X(1, 1, 1) XD DY 3 2 , so XD 3 DY , i.e. 2 XD 3DY 2 4 1 so 2(d x ) 3( y d ) d 2 x 3 y 2 D (4, 2, 7) 5 7 Exercise 2 T(6, 7, -3) 1. The point P divides the line ST in the ratio 3:1 as shown in the diagram. Find the co-ordinates of P. P S(-2, 3, 1) F(8, -4, 6) 2. The point E divides the line DF in the ratio 2:1 as shown in the diagram. E Find the co-ordinates of E. C(-3, 8, 0) D(2, -1, 3) 3. The point B divides the line AC in the ratio 3:1 as shown in the diagram. Find the co-ordinates of B. B A(1, 0, -4) PC(c): Use the scalar product. Example C The diagram shows triangle ABC where 1 5 AB = 3 and AC = 5 1 4 B A a) Find the value of AB . AC . AB. AC 1.(5) (3).(5) (1).(4) 5 15 4 14 b) Use the result of (a) to find the size of angle BAC. AB 11 and AC 66 cos BAC AB. AC AB . AC 14 11. 66 14 11 6 BAC 58.7 Exercise 3 C 1. The diagram shows triangle ABC where 1 2 AB = 2 and AC = 0 1 1 A a) Find the value of AB. AC . b) Use the result of (a) to find the size of angle BAC. B 2. The diagram shows triangle ABC where C 2 1 AB = 1 and AC = 0 2 2 a) Find the value of AB. AC . b) Use the result of (a) to find the size of angle BAC. B A 3. The diagram shows triangle ABC where C 3 1 AB = 2 and AC = 0 2 4 a) Find the value of AB. AC . b) Use the result of (a) to find the size of angle BAC. Outcome 2 Use further differentiation and integration. PC(a): Differentiate ksin x, kcos x. Example i) Differentiate 4cos x with respect to x. d 4 cos x 4 sin x dx dy 1 ii) Given y sin x , find . 8 dx dy 1 cos x dx 8 Exercise 4 1. i) Differentiate –2sin x with respect to x. dy 1 ii) Given y cos x , find . 3 dx 2. i) Differentiate –3cos x with respect to x. dy 1 ii) Given y sin x , find . dx 4 3. i) Differentiate –5sin x with respect to x. dy 1 ii) Given y cos x , find . dx 2 A B PC(b): Differentiate using the function of a function rule. Example 5 Find f x when f x 3x 2 u 3x 2 y u5 dy 4 5u 4 53 x 2 du dy dy du 4 f x 153 x 2 dx du dx du 3 dx Exercise 5 3 1. Find f x when f x x 4 . 4 2. Find f x when f x x 2 . 6 3. Find f x when f x x 5 . n PC(c): Integrate functions of the form f ( x) x q , n rational except for –1, and f ( x) p cos x and f ( x) p sin x . Example i) Find 7 sin x dx 7 cos x C 4 ii) Integrate cos x with respect to x. 7 4 sin x C 7 iii) Evaluate 1 3x 3 2 2 dx . 2 1 3 1 3 1 3 3 x 3 .9 6 57 9 9 9 1 Exercise 6 1. a) Find 3 cos x dx . 2 b) Integrate sin x with respect to x. 3 5 c) Evaluate 2 ( x 1) 3 dx 2. a) Find 2 sin x dx . 3 b) Integrate cos x with respect to x. 5 4 c) Evaluate 2 ( x 1) 4 dx . 3. a) Find 5 cos x dx . 2 sin x with respect to x. 5 4 c) Evaluate 3 ( x 2) 2 dx . b) Integrate Outcome 3 Use properties of logarithmic and exponential functions. PC(a): Simplify a numerical expression using the laws of logarithms.. Example i) Simplify log a 30 log a 6 30 log a log a 5 6 ii) Simplify 7 log 16 4 log 16 64 16384 log 16 4 7 log 16 64 log 16 log 16 256 log 16 16 2 2 64 Exercise 7 1. a) Simplify log a 10 log a 3 . b) Simplify 5 log 9 3 log 9 27 . 2. a) Simplify log a 16 log a 2 . b) Simplify 5 log 27 3 log 27 9 . 3. a) Simplify log a 4 log a 15 . b) Simplify 7 log 4 2 log 4 8 . PC(b): Solve simple logarithmic and exponential equations. log e 7 , find an approximation for x. log e 4 x = 1.404, rounded from the calculator. Example i) If x ii) Given that log 10 y 1.6 write down an expression for the exact value of y. y 101.6 iii) If y 10 3.4 , find an approximation for y. y = 2511.89, rounded from the calculator. Exercise 8 log e 5 , find an approximation for x. log e 3 b) Given that log 10 y = 2.4, write down an expression for the exact value of y. c) If y = 10 3.1 , find an approximation for y. 1. a) If x = log e 8 , find an approximation for x. log e 5 b) Given that log 10 y = 4.2, write down an expression for the exact value of y. c) If y = 10 1.8 , find an approximation for y. 2. a) If x = log e 9 , find an approximation for x. log e 7 b) Given that log 10 y = 3.8, write down an expression for the exact value of y. c) If y = 10 2.5 , find an approximation for y. 3. a) If x = Outcome 4 Apply further trigonometric relationships. PC(a): Express a cos b sin in the form r cos or Example r sin . Express 3 cos x sin x in the form k cosx where k 0, 0 360 . k cos x k cos x cos k sin x sin k cos cos x k sin sin x k cos 3 ; k sin 1 k cos2 k 2 sin 2 4 k 2 k sin 1 k cos 3 1 tan 330 3 2 3 cos x sin x 2 cos x 330 Exercise 9 1. Express 3cos x + 4sin x in the form kcos(x - ) where k 0 and 0 360. 2. Express cos x + 2sin x in the form kcos(x - ) where k 0 and 0 360. 3. Express 7cos x + 24sin x in the form kcos(x - ) where k 0 and 0 360. Answers Exercise 1 10 1. i) 10 ii) Proof 5 2 2. i) 1 ii) Proof 1 3 3. i) 9 ii) Proof 15 2. E(6, -3, 5) 3. B(-2, 6, -3) 2. a) 6 3. a) 11 Exercise 2 1. P(4, 6, -2) Exercise 3 1. a) 1 b) 79.5 b) 26.6 b) 42.8 Exercise 4 1 3 1. a) -2cos x b) - sin x 2. a) 3sin x b) 1 cos x 4 3. a) -5cos x Exercise 5 1. 3( x 4) 4 2. 4( x 2) 5 3. 6( x 5) 5 Exercise 6 1. a)3sin x + C 2 cos x + C 3 3 b) - sin x + C 5 2 b) - cos x + C 5 b) 2. a)-2cos x + C 3. a)5sin x + C 3 4 c) 63 c) 576.4 c) 2 1 3 Exercise 7 1. a) log a 30 b) 1 2. a) log a 8 b) 1 3. a) log a 60 b) 2 Exercise 8 1. a) 1.46 3. a) 1.13 b) 10 2.4 b) 10 3.8 c) 1259 c) 316 2. a) 1.29 b) 10 4.2 c) 63.1 Exercise 9 1. 5cos (x - 53.1) 2. 5 cos (x - 63.4) 3. 25cos (x - 73.7) 1 2 b) - sin x