Download Selecting the best environment-watershed plan with solving full fuzzy linear programming

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Braโ€“ket notation wikipedia , lookup

List of important publications in mathematics wikipedia , lookup

Mathematics of radio engineering wikipedia , lookup

Transcript
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
AENSI Journals
Advances in Environmental Biology
Journal home page: http://www.aensiweb.com/aeb.html
Selecting the best environment-watershed plan with solving full fuzzy linear
programming
R. Saneifard, N. Jafarloo
Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran.
ARTICLE INFO
Article history:
Received 23 August 2013
Received in revised form 24 October
2013
Accepted 5 October 2013
Available online 14 November 2013
ABSTRACT
Fuzzy linear programming problems have an essential role in fuzzy modeling, which
can formulate uncertainty in actual environment. In this paper after introducing fully
fuzzy linear programming(FFLP), a new method to solve it is proposed. It is very
easy to understand and to apply for fully fuzzy linear systems occurring in real life
situation as compared to the existing methods. To illustrate the proposed method
numerical examples are solved.
Key words:
Fully fuzzy linear programming,
Trapezoidal fuzzy numbers, Ranking
function.
© 2013 AENSI Publisher All rights reserved.
INTRODUCTION
Linear programming (LP) is one of the most frequently applied operations research techniques. In the real
world situations a linear programming model involves a lot of parameters whose values are assigned by experts.
However both experts and decision makers frequently do not precisely know the value of those parameters.
Therefore it is useful to consider the knowledge of experts about the parameters as fuzzy data [10]. Using the
concept of decision making in fuzzy environmentgiven by Bellman and Zade [13]. The first formulation of
fuzzy linear programming (FLP) is proposed by Zimmermann [8]. Afterwards, many authors have considered
various kinds of FLP problems and have proposed several approaches for solving these problems [1,2,3,4,5].
Fuzzy set theory has been applied to many disciplines such as control theory and management science,
mathematical modeling and industrial applications. The concept of fuzzy linear programming (FLP) on general
level was first proposed by Tanaka et al. Afterwards, many authors considered various types of FLP problems
and proposed several approaches for solving this problem. The fuzzy linear programming problem in which all
parameters as well as the variables are represented by fuzzy numbers is known as FFLP problems. Buckley and
Feuring [9] proposed amethod to find the solution for a fully fuzzified linear programming problem by changing
the objective function into a multiobjective LP problem. Allahviranloo et al proposed a method based on
ranking function for solving FFLP problems. Maleki [7] proposed a method for solving LP problems with
vagueness in constraints by using ranking function. The main disadvantage of the solution which is obtained by
existing methods is that it does not satisfy the constraints exactly. Linear system of equations play a major role
in various financial applications. Dehghan et al [12] proposed a fuzzy linear programming approach for finding
the exact solution of fully fuzzy linear system of equations which is applicable only if all the elements of the
coefficient matrix are nonnegative fuzzy numbers. Lotfi et al [6] proposed a new method to find the fuzzy
optimal solution of FFLP problems with equality constraints which can be applied only if the elements of the
coefficient matrix are symmetric fuzzy numbers and the obtained solution are approximate but not exact. Our
main in this paper introduce a new method for solving the FFLP problems with using ranking function.
Moreover, we illustrated our method with an example.
The paper is organized as follows: In Section 2, some basic definitions between two trapezoidal fuzzy
numbers are reviewed. In Section 3, after introducing FFLP, a new method to solve it is proposed. In Section 4,
numerical examples are solved to show the efficiency of the proposed method. Ends this paper with a
conclusion.
Preliminaries:
In this section some basic definitions of fuzzy set theory are reviewed.
Corresponding Author: R. Saneifard, N. Jafarloo, Department of Mathematics, Urmia Branch, Islamic Azad University,
Urmia, Iran.
3260
R. Saneifard, N. Jafarloo
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
Definition 2.1:
The Characteristic function ๐œ‡๐œ‡๐ด๐ด of a crisp set ๐ด๐ด โІ ๐‘‹๐‘‹ assigns a value either 0 or 1 to each member in ๐‘‹๐‘‹. This
function can be generalized to a function ๐œ‡๐œ‡๐ด๐ด๏ฟฝ such that the value assigned to the element of the universal set ๐‘‹๐‘‹fall
within a specified range i.e. ๐œ‡๐œ‡๐ด๐ด๏ฟฝ : ๐‘‹๐‘‹ โ†’ [0,1]. The assigned value indicate the membership grade of the element in
the set ๐ด๐ด.
The function ๐œ‡๐œ‡๐ด๐ด๏ฟฝ is called the membership function and the set ๐ด๐ดฬƒ = ๏ฟฝ๏ฟฝ๐‘ฅ๐‘ฅ, ๐œ‡๐œ‡๐ด๐ด๏ฟฝ (๐‘ฅ๐‘ฅ)๏ฟฝ; ๐‘ฅ๐‘ฅ โˆˆ ๐‘‹๐‘‹๏ฟฝ is called a fuzzy set.
The family of all fuzzy sets in ๐‘‹๐‘‹ is denoted by ๐น๐น(๐‘‹๐‘‹).
Definition 2.2:
A fuzzy number à is said to be non-negative fuzzy number if and only ๐œ‡๐œ‡Ã (๐‘ฅ๐‘ฅ) = 0 โˆ€ ๐‘ฅ๐‘ฅ< 0. The set of nonnegative fuzzy numbers may be represented by ๐น๐น(๐‘…๐‘…+).
Definition2.3:
A fuzzy number à = (a,b,c,d) is said to be a trapezoidal fuzzy number if its membership function is given
by , where aโ‰ค ๐‘๐‘ โ‰ค ๐‘๐‘ โ‰ค ๐‘‘๐‘‘
0,
โŽง ๐‘ฅ๐‘ฅโˆ’๐‘Ž๐‘Ž
โŽช ๐‘๐‘โˆ’๐‘Ž๐‘Ž ,
๐œ‡๐œ‡Ã (๐‘ฅ๐‘ฅ)= 1,
โŽจ ๐‘‘๐‘‘โˆ’๐‘ฅ๐‘ฅ
โŽช ๐‘‘๐‘‘โˆ’๐‘๐‘ ,
โŽฉ 0,
๐‘ฅ๐‘ฅ < ๐‘Ž๐‘Ž ,
๐‘Ž๐‘Ž โ‰ค ๐‘ฅ๐‘ฅ < ๐‘๐‘,
๐‘๐‘ โ‰ค ๐‘ฅ๐‘ฅ โ‰ค ๐‘๐‘,
๐‘๐‘ < ๐‘ฅ๐‘ฅ โ‰ค ๐‘‘๐‘‘,
๐‘ฅ๐‘ฅ > ๐‘‘๐‘‘.
Definition 2.4:
A trapezoidal fuzzy number à = (a,b,c,d) is said to be non-negative (non-positive) trapezoidal fuzzy
number i.e., Ãโ‰ฅ 0(à โ‰ค 0) if and only ifaโ‰ฅ 0 (๐‘๐‘ โ‰ค 0). The set of non-negative trapezoidal fuzzy numbers can be
represented by ๐‘‡๐‘‡๐‘‡๐‘‡(๐‘…๐‘…+).
Definition 2.5:
Two trapezoidal fuzzy numberÃ1 =(a,b,c,d) and Ã2 =(e,f,g,h) are said to be equal i.e., Ã1 =Ã2 if and only if
a=e, b=f, c=g, d=h.
Definition 2.6:
A fuzzy number ๐ด๐ดฬƒ is called N- zero fuzzy number , denoted by
๐ด๐ดฬƒ โ‰ก 0 if its membership function ๐œ‡๐œ‡๐ด๐ด๏ฟฝ (๐‘ฅ๐‘ฅ) satisfies
๐œ‡๐œ‡๐ด๐ด๏ฟฝ (0โˆ’)=๐œ‡๐œ‡๐ด๐ด๏ฟฝ (0+)= ๐œ‡๐œ‡๐ด๐ด๏ฟฝ (0) โ‰  0. Henceforth a trapezoidal fuzzy number
๐ด๐ดฬƒ= (a,b,c,d)โ‰ก 0 if and only if : a< 0 <d.
Remark 2.1:
A trapezoidal fuzzy number that is not positive, not negative and not zero is a N-zero trapezoidal fuzzy
number.
Remark 2.2:
A trapezoidal fuzzy number is a triangular fuzzy number if b=c and a N-zero triangular fuzzy number if
a< 0< d ; b=c.
Definition 2.7:
letÃ1 =(a,b,c,d) and Ã2 =(e,f,g,h) be two non-negative trapezoidal fuzzy number then
i) Ã1 โจ Ã2 = (a,b,c,d)โจ(e,f,g,h) = (a+e, b+f, c+g, d+h),
ii) - Ã1 = -(a,b,c,d)= (-d, -c, -b, -a),
iii) Ã1 โŠ– Ã2 = (a,b,c,d)โŠ– (e,f,g,h) = (a-h, b-g, c-f, d-e),
Remark 2.3:
Let Ã1 = (๐‘Ž๐‘Ž, ๐‘๐‘, ๐‘๐‘, ๐‘‘๐‘‘) and Ã2 = (๐‘’๐‘’, ๐‘“๐‘“, ๐‘”๐‘”, โ„Ž)be two unrestricted trapezoidal fuzzy numbers,Then:
If Ã1 , Ã2 arepositive:
(๐‘Ž๐‘Ž, ๐‘๐‘, ๐‘๐‘, ๐‘‘๐‘‘)โจ‚(๐‘’๐‘’, ๐‘“๐‘“, ๐‘”๐‘”, โ„Ž) = (๐‘Ž๐‘Ž๐‘Ž๐‘Ž, ๐‘๐‘๐‘๐‘, ๐‘๐‘๐‘๐‘, ๐‘‘๐‘‘โ„Ž),
If๐ด๐ดฬƒ1 โ‰ก 0 and ๐ด๐ดฬƒ2 positive:
(๐‘Ž๐‘Ž, ๐‘๐‘, ๐‘๐‘, ๐‘‘๐‘‘)โจ‚(๐‘’๐‘’, ๐‘“๐‘“, ๐‘”๐‘”, โ„Ž) โ‰… (๐‘Ž๐‘Žโ„Ž, ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘๐‘๐‘๐‘, ๐‘๐‘๐‘๐‘), ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘๐‘๐‘๐‘, ๐‘๐‘๐‘๐‘), ๐‘‘๐‘‘โ„Ž).
3261
R. Saneifard, N. Jafarloo
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
Definition2.8:
In fact, an efficient approach for ordering elements is to define a ranking function โ„œ: F(R)โŸถR which for
each fuzzy number into the real line, where a natural order exists. Let ๐ด๐ดฬƒ = (๐‘Ž๐‘Ž, ๐‘๐‘, ๐‘๐‘, ๐‘๐‘)be a trapezoidal fuzzy
๐‘Ž๐‘Ž+๐‘๐‘+๐‘๐‘+๐‘‘๐‘‘
.
number then โ„œ๏ฟฝ๐ด๐ดฬƒ๏ฟฝ =
4
Fully fuzzy linear programming problems (FFLP):
Consider the following fully fuzzy linear programming problems with m fuzzy equality constraints and n
fuzzy variables may be formulated as follows:
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€(๐‘œ๐‘œ๐‘œ๐‘œ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š)๐‘ง๐‘งฬƒ = ๐‘๐‘ฬƒ1 โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 โจ โ‹ฏ ๐‘๐‘ฬƒ๐‘›๐‘› โจ‚๐‘ฅ๐‘ฅ๏ฟฝ๐‘›๐‘›
๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘† ๐‘ก๐‘ก๐‘ก๐‘ก
๐‘Ž๐‘Ž๏ฟฝ11 โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 โจ โ‹ฏ ๐‘Ž๐‘Ž๏ฟฝ1๐‘›๐‘› โจ‚๐‘ฅ๐‘ฅ๏ฟฝ๐‘›๐‘› = ๐‘๐‘๏ฟฝ1
โ‹ฎ
๐‘Ž๐‘Ž๏ฟฝ๐‘š๐‘š1 โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 โจ โ‹ฏ ๐‘Ž๐‘Ž๏ฟฝ๐‘š๐‘š๐‘š๐‘š โจ‚๐‘ฅ๐‘ฅ๏ฟฝ๐‘›๐‘› = ๐‘๐‘๏ฟฝ๐‘š๐‘š
๐‘ฅ๐‘ฅ๏ฟฝ โˆˆ ๐น๐น(๐‘…๐‘…).
The matrix form of the above equation is:
(๐‘ƒ๐‘ƒ1 )
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€(๐‘œ๐‘œ๐‘œ๐‘œ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š)๐‘ง๐‘งฬƒ = ๐‘๐‘ฬƒ ๐‘‡๐‘‡ โจ‚๐‘‹๐‘‹๏ฟฝ,
๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘† ๐‘ก๐‘ก๐‘ก๐‘ก ๐ด๐ดฬƒโจ‚๐‘‹๐‘‹๏ฟฝ = ๐‘๐‘๏ฟฝ,
๐‘‹๐‘‹๏ฟฝ โˆˆ ๐น๐น(๐‘…๐‘…).
The coefficient matrix ๐ด๐ดฬƒ = [๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– ]๐‘š๐‘š ×๐‘›๐‘› , 1 โ‰ค ๐‘–๐‘–, ๐‘—๐‘— โ‰ค ๐‘›๐‘› is ๐‘š๐‘š × ๐‘›๐‘› fuzzy matrix where โˆ€ ๐‘–๐‘–, ๐‘—๐‘—, ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– > 0 or ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– โ‰ก
0and ๐‘ฅ๐‘ฅ๏ฟฝ๐‘–๐‘– , ๐‘๐‘๏ฟฝ๐‘–๐‘– โˆˆ ๐น๐น(๐‘…๐‘…). If matrix ๐ด๐ดฬƒ denoted by ๐ด๐ดฬƒ = (๐ด๐ด, ๐ด๐ดโ€ฒ , ๐ด๐ดโ€ฒโ€ฒ , ๐ด๐ดโ€ฒโ€ฒโ€ฒ ) that ๐ด๐ด = ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– ๏ฟฝ, ๐ด๐ดโ€ฒ = ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– โ€ฒ ๏ฟฝ, ๐ด๐ดโ€ฒโ€ฒ = ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– โ€ฒโ€ฒ ๏ฟฝ, ๐ด๐ดโ€ฒโ€ฒโ€ฒ =
๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ๏ฟฝ, ๐‘‹๐‘‹๏ฟฝ = (๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ โ€ฒ , ๐‘ฅ๐‘ฅ โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ โ€ฒโ€ฒโ€ฒ ), ๐‘๐‘๏ฟฝ = (๐‘๐‘, ๐‘๐‘ โ€ฒ , ๐‘๐‘ โ€ฒโ€ฒ , ๐‘๐‘ โ€ฒโ€ฒโ€ฒ ) then we have:
โ€ฒ
โ€ฒโ€ฒ
โ€ฒโ€ฒโ€ฒ )
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€(๐‘œ๐‘œ๐‘œ๐‘œ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š)๐‘ง๐‘งฬƒ = (๐‘๐‘, ๐‘๐‘ โ€ฒ , ๐‘๐‘ โ€ฒโ€ฒ , ๐‘๐‘ โ€ฒโ€ฒโ€ฒ ) ๏ฟฝ(๐‘ฅ๐‘ฅ,
๐‘ฅ๐‘ฅ โ€ฒ , ๐‘ฅ๐‘ฅ โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ โ€ฒโ€ฒโ€ฒ ),
๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘†๐‘† ๐‘ก๐‘ก๐‘ก๐‘ก (๐ด๐ด, ๐ด๐ดโ€ฒ , ๐ด๐ดโ€ฒโ€ฒ , ๐ด๐ดโ€ฒโ€ฒโ€ฒ )โจ‚(๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ โ€ฒ , ๐‘ฅ๐‘ฅ โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ โ€ฒโ€ฒโ€ฒ ) = (๐‘๐‘, ๐‘๐‘ โ€ฒ , ๐‘๐‘ โ€ฒโ€ฒ , ๐‘๐‘ โ€ฒโ€ฒโ€ฒ ),
(๐‘ฅ๐‘ฅ, ๐‘ฅ๐‘ฅ , ๐‘ฅ๐‘ฅ , ๐‘ฅ๐‘ฅ โ‰ฝ 0.
If S, T are two matrices defined as follows:
S= ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– โ‰ก 0๏ฟฝ, T= ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– โ‰ฅ 0๏ฟฝ
And ๐ผ๐ผ +, ๐ผ๐ผโˆ’are indexes where:
๐ผ๐ผ+ = {๐‘–๐‘–|๐‘๐‘ฬƒ๐‘–๐‘– โ‰ฅ 0} , ๐ผ๐ผโˆ’ = {๐‘–๐‘–|๐‘๐‘ฬƒ๐‘–๐‘– โ‰ก 0}
๐ผ๐ผ = {๐ผ๐ผ+, ๐ผ๐ผโˆ’}
And we have two vectors:
๐‘‹๐‘‹๏ฟฝ = ๏ฟฝ๐‘ฅ๐‘ฅ๏ฟฝ๐‘–๐‘– ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– โ‰ก 0๏ฟฝ ,
๐‘Œ๐‘Œ๏ฟฝ = ๏ฟฝ๐‘ฅ๐‘ฅ๏ฟฝ๐‘–๐‘– ๏ฟฝ๐‘Ž๐‘Ž๏ฟฝ๐‘–๐‘–๐‘–๐‘– โ‰ฅ 0๏ฟฝ
(๐‘ƒ๐‘ƒ
)
With these definitions we rewrite problem 1 as:
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€(๐‘œ๐‘œ๐‘œ๐‘œ ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š)๐‘ง๐‘งฬƒ = โˆ‘๐‘–๐‘–โˆˆ๐ผ๐ผ + ๐‘๐‘ฬƒ๐‘–๐‘– โจ‚๐‘ฅ๐‘ฅ๏ฟฝ๐‘–๐‘– โจ โˆ‘๐‘–๐‘–โˆˆ๐ผ๐ผ โˆ’ ๐‘๐‘ฬƒ๐‘–๐‘– โจ‚๐‘ฅ๐‘ฅ๏ฟฝ๐‘–๐‘– ,
๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ก๐‘ก๐‘ก๐‘ก
๐‘†๐‘†ฬƒโจ‚๐‘‹๐‘‹๏ฟฝ โจ ๐‘‡๐‘‡๏ฟฝโจ‚๐‘Œ๐‘Œ๏ฟฝ = ๐‘๐‘๏ฟฝ,
๏ฟฝ
๏ฟฝ
๐‘‹๐‘‹, ๐‘Œ๐‘Œ โ‰ฝ 0.
And
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ (๐‘œ๐‘œ๐‘œ๐‘œ ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€)๐‘๐‘๏ฟฝ = ๏ฟฝ(๐‘๐‘๐‘–๐‘– , ๐‘๐‘๐‘–๐‘– โ€ฒ , ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒ , ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒโ€ฒ )โจ‚(๐‘ฅ๐‘ฅ๐‘–๐‘– , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ )
โŠ•
๐‘–๐‘–โˆˆ๐ผ๐ผ +
๏ฟฝ(๐‘๐‘๐‘–๐‘– , ๐‘๐‘๐‘–๐‘– , ๐‘๐‘๐‘–๐‘– , ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒโ€ฒ )โจ‚(๐‘ฅ๐‘ฅ๐‘–๐‘– , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ),
โ€ฒ
๐‘–๐‘–โˆˆ๐ผ๐ผ โˆ’
โ€ฒโ€ฒ
๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ก๐‘ก๐‘ก๐‘ก (๐‘†๐‘†, ๐‘†๐‘† โ€ฒ , ๐‘†๐‘† โ€ฒโ€ฒ , ๐‘†๐‘† โ€ฒโ€ฒโ€ฒ )โจ‚(๐‘‹๐‘‹, ๐‘‹๐‘‹ โ€ฒ , ๐‘‹๐‘‹ โ€ฒโ€ฒ , ๐‘‹๐‘‹ โ€ฒโ€ฒโ€ฒ )โจ(๐‘‡๐‘‡, ๐‘‡๐‘‡ โ€ฒ , ๐‘‡๐‘‡ โ€ฒโ€ฒ , ๐‘‡๐‘‡ โ€ฒโ€ฒโ€ฒ )โจ‚(๐‘Œ๐‘Œ, ๐‘Œ๐‘Œ โ€ฒ , ๐‘Œ๐‘Œ โ€ฒโ€ฒ , ๐‘Œ๐‘Œ โ€ฒโ€ฒโ€ฒ ) = (๐‘๐‘, ๐‘๐‘ โ€ฒ , ๐‘๐‘ โ€ฒโ€ฒ , ๐‘๐‘ โ€ฒโ€ฒโ€ฒ ),
โ€ฒ
(๐‘‹๐‘‹, ๐‘‹๐‘‹ , ๐‘‹๐‘‹ โ€ฒโ€ฒ , ๐‘‹๐‘‹ โ€ฒโ€ฒโ€ฒ ), (๐‘Œ๐‘Œ, ๐‘Œ๐‘Œ โ€ฒ , ๐‘Œ๐‘Œ โ€ฒโ€ฒ , ๐‘Œ๐‘Œ โ€ฒโ€ฒโ€ฒ ) โ‰ฝ 0.
By using the arithmetic operations, defined in sect 2, we have:
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ (๐‘œ๐‘œ๐‘œ๐‘œ ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€)๐‘๐‘๏ฟฝ =
โˆ‘๐‘–๐‘–โˆˆ๐ผ๐ผ(๐‘๐‘๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘– + ๐‘๐‘๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ,
๐‘๐‘๐‘–๐‘– โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ + ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘๐‘๐‘–๐‘– โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ , ๐‘๐‘๐‘–๐‘– โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ ), ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ +
๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ , ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ ), ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ + ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ),
โ€ฒโ€ฒโ€ฒ
โ€ฒ โ€ฒโ€ฒ โ€ฒ โ€ฒ )
โ€ฒ โ€ฒ
โ€ฒโ€ฒ โ€ฒโ€ฒ โ€ฒโ€ฒ โ€ฒ )
๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ก๐‘ก๐‘ก๐‘ก ๐‘†๐‘†๐‘‹๐‘‹ + ๐‘‡๐‘‡๐‘‡๐‘‡ , ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘†๐‘† ๐‘‹๐‘‹ , ๐‘†๐‘† ๐‘‹๐‘‹ + ๐‘‡๐‘‡ ๐‘Œ๐‘Œ , ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘†๐‘† ๐‘‹๐‘‹ , ๐‘†๐‘† ๐‘‹๐‘‹ + ๐‘‡๐‘‡ โ€ฒโ€ฒ ๐‘Œ๐‘Œ โ€ฒโ€ฒ , ๐‘†๐‘† โ€ฒโ€ฒโ€ฒ ๐‘‹๐‘‹ โ€ฒโ€ฒโ€ฒ + ๐‘‡๐‘‡ โ€ฒโ€ฒโ€ฒ ๐‘Œ๐‘Œ โ€ฒโ€ฒโ€ฒ
= (๐‘๐‘, ๐‘๐‘ โ€ฒ , ๐‘๐‘ โ€ฒโ€ฒ , ๐‘๐‘ โ€ฒโ€ฒโ€ฒ ),
โ€ฒ
โ€ฒโ€ฒ
โ€ฒโ€ฒโ€ฒ
โ€ฒ
โ€ฒโ€ฒ
โ€ฒโ€ฒโ€ฒ
(๐‘‹๐‘‹, ๐‘‹๐‘‹ , ๐‘‹๐‘‹ , ๐‘‹๐‘‹ ), (๐‘Œ๐‘Œ, ๐‘Œ๐‘Œ , ๐‘Œ๐‘Œ , ๐‘Œ๐‘Œ ) โ‰ฝ 0 .
Now using Definitions 2.5 and 2.8 the fuzzy linear programming problem can be converted into the
following crisp linear programming problem.
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ (๐‘œ๐‘œ๐‘œ๐‘œ ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€) โ„œ(โˆ‘๐‘–๐‘–โˆˆ๐ผ๐ผ (๐‘๐‘๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘– + ๐‘๐‘๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ,
โ€ฒ โ€ฒ
๐‘๐‘๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘– + ๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘๐‘๐‘–๐‘– โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ , ๐‘๐‘๐‘–๐‘– โ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ ), ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ +
๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ , ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ ), ๐‘๐‘๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ +
โ€ฒโ€ฒโ€ฒ โ€ฒโ€ฒโ€ฒ ))
๐‘๐‘๐‘–๐‘– ๐‘ฅ๐‘ฅ๐‘–๐‘– ,
๐‘†๐‘†๐‘‹๐‘‹ โ€ฒโ€ฒโ€ฒ โจ๐‘‡๐‘‡๐‘‡๐‘‡ = ๐‘๐‘,
๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘†๐‘† โ€ฒ ๐‘‹๐‘‹ โ€ฒโ€ฒ , ๐‘†๐‘† โ€ฒ ๐‘‹๐‘‹ โ€ฒ ) + ๐‘‡๐‘‡ โ€ฒ ๐‘Œ๐‘Œ โ€ฒ = ๐‘๐‘ โ€ฒ ,
3262
R. Saneifard, N. Jafarloo
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
๐‘š๐‘š๐‘š๐‘š๐‘š๐‘š(๐‘†๐‘† โ€ฒโ€ฒ ๐‘‹๐‘‹ โ€ฒโ€ฒ , ๐‘†๐‘† โ€ฒโ€ฒ ๐‘‹๐‘‹ โ€ฒ ) + ๐‘‡๐‘‡ โ€ฒโ€ฒ ๐‘Œ๐‘Œ โ€ฒโ€ฒ = ๐‘๐‘ โ€ฒโ€ฒ ,
๐‘†๐‘† โ€ฒโ€ฒโ€ฒ ๐‘‹๐‘‹ โ€ฒโ€ฒโ€ฒ + ๐‘‡๐‘‡ โ€ฒโ€ฒโ€ฒ ๐‘Œ๐‘Œ โ€ฒโ€ฒโ€ฒ = ๐‘๐‘ โ€ฒโ€ฒโ€ฒ = ๐‘๐‘ โ€ฒโ€ฒโ€ฒ ,
๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ โˆ’ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ‰ฅ 0, ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ โ‰ฅ 0, ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ โ‰ฅ 0.
Now solve the crisp linear programming problem, obtained in above to find the optimal solution.
If๐‘‹๐‘‹ โˆ— is optimal solution then for all ๐‘‹๐‘‹ โˆˆ ๐‘†๐‘† we have:
โˆ—
๐ถ๐ถ๐‘‹๐‘‹ โ‰ค ๐ถ๐ถ๐ถ๐ถ
But if any ๐‘‹๐‘‹๏ฟฝ = (๐‘ฅ๐‘ฅ๐‘–๐‘– , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒ , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ๐‘–๐‘– โ€ฒโ€ฒโ€ฒ ) it is assumed as fuzzy number, we have:
โ„œ๏ฟฝ๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ โˆ— ๏ฟฝ โ‰ค โ„œ๏ฟฝ๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ๏ฟฝ,
(in case of minimization problem),
โ„œ๏ฟฝ๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ โˆ— ๏ฟฝ โ‰ฅ โ„œ๏ฟฝ๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ๏ฟฝ,
(in case of maximization problem).
Then
(in case of minimization problem),
๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ โˆ— โ‰ผ ๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ,
(in case of maximization problem).
๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ โˆ— โ‰ฝ ๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ,
And this means that ๐‘‹๐‘‹๏ฟฝ โˆ— = (๐‘ฅ๐‘ฅ โˆ— , ๐‘ฅ๐‘ฅ โ€ฒโˆ— , ๐‘ฅ๐‘ฅ โ€ฒโ€ฒโˆ— , ๐‘ฅ๐‘ฅ โ€ฒโ€ฒโ€ฒโˆ— ) is an optimal solution for S.
Remark: if ๐‘๐‘ โˆ— be optimal solution of problem (๐‘ƒ๐‘ƒ1 ), then we have ๐‘๐‘ โˆ— = โ„œ๏ฟฝ๐‘๐‘๏ฟฝ โˆ— ๏ฟฝthat ๐‘๐‘๏ฟฝ โˆ— = ๐ถ๐ถฬƒ โจ‚๐‘‹๐‘‹๏ฟฝ โˆ— .
Examples:
Examples 4.1:
let us consider the following FFLS and solve it by the proposed method.
(1,3,6,8)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 โจ(3,4,6,8)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ2 = (1,27,66,124),
(3,4,5,6)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 โจ(4,5,8,10)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ2 = (10,35,70,125),
๐‘ฅ๐‘ฅ๏ฟฝ1 , ๐‘ฅ๐‘ฅ๏ฟฝ2 โ‰ฅ 0.
(1,3,6,8)โจ‚(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ1 โ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ )โจ(3,4,6,8)โจ‚(๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ2 โ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ ) = (1,27,66,124),
(3,4,5,6)โจ‚(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ1 โ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ )โจ(4,5,8,10)โจ‚(๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ2 โ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ ) = (10,35,70,125),
(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ1 โ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ ), (๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ2 โ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ ) โ‰ฅ 0.
โ€ฒ
โ€ฒ
โ€ฒโ€ฒ
(๐‘ฅ๐‘ฅ1 + 3๐‘ฅ๐‘ฅ2 , 3๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2 , 6๐‘ฅ๐‘ฅ1 + ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ , 8๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ + ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ ) = (1,27,66,124),
๏ฟฝ3๐‘ฅ๐‘ฅ1 + 4๐‘ฅ๐‘ฅ2 , 4๐‘ฅ๐‘ฅ1 โ€ฒ + 5๐‘ฅ๐‘ฅ2 โ€ฒ , 5๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ + 8๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ , 6๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ + 10๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ ๏ฟฝ = (10,35,70,125),
(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ1 โ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ ), (๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ2 โ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ ) โ‰ฅ 0.
Then:
๐‘ฅ๐‘ฅ1 + 3๐‘ฅ๐‘ฅ2 = 1,
3๐‘ฅ๐‘ฅ1 โ€ฒ + ๐‘ฅ๐‘ฅ2 โ€ฒ = 27,
6๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ + ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ = 66,
8๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ + ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ = 124,
3๐‘ฅ๐‘ฅ1 + 4๐‘ฅ๐‘ฅ2 = 10,
4๐‘ฅ๐‘ฅ1 โ€ฒ + 5๐‘ฅ๐‘ฅ2 โ€ฒ = 35,
5๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ + 8๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ = 70,
6๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ + 10๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ = 125,
Now the above linear system can be solved by using two phase method:
Minimize (๐‘Ÿ๐‘Ÿ1 + ๐‘Ÿ๐‘Ÿ2 + ๐‘Ÿ๐‘Ÿ1 โ€ฒ + ๐‘Ÿ๐‘Ÿ2 โ€ฒ + ๐‘Ÿ๐‘Ÿ1 โ€ฒโ€ฒ + ๐‘Ÿ๐‘Ÿ2 โ€ฒโ€ฒ + ๐‘Ÿ๐‘Ÿ1 โ€ฒโ€ฒโ€ฒ + ๐‘Ÿ๐‘Ÿ2 โ€ฒโ€ฒโ€ฒ ),
๐‘ฅ๐‘ฅ1 + 3๐‘ฅ๐‘ฅ2 + ๐‘Ÿ๐‘Ÿ1 = 1,
3๐‘ฅ๐‘ฅ1 โ€ฒ + ๐‘ฅ๐‘ฅ2 โ€ฒ +๐‘Ÿ๐‘Ÿ2 = 27,
6๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ + ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ + ๐‘Ÿ๐‘Ÿ1 โ€ฒ = 66,
8๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ + ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ +๐‘Ÿ๐‘Ÿ2 โ€ฒ = 124,
3๐‘ฅ๐‘ฅ1 + 4๐‘ฅ๐‘ฅ2 + ๐‘Ÿ๐‘Ÿ1 โ€ฒโ€ฒ = 10,
4๐‘ฅ๐‘ฅ1 โ€ฒ + 5๐‘ฅ๐‘ฅ2 โ€ฒ + ๐‘Ÿ๐‘Ÿ2 โ€ฒโ€ฒ = 35,
5๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ + 8๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ + ๐‘Ÿ๐‘Ÿ1 โ€ฒโ€ฒโ€ฒ = 70,
6๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ + 10๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ + ๐‘Ÿ๐‘Ÿ2 โ€ฒโ€ฒโ€ฒ = 125,
โ€ฒ
๐‘ฅ๐‘ฅ1 โˆ’ ๐‘ฅ๐‘ฅ1 โ‰ฅ 0, ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฅ1 โ€ฒ โ‰ฅ 0, ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ โ‰ฅ 0,
โ€ฒ
โ€ฒโ€ฒ
โ€ฒ
๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ2 โ‰ฅ 0, ๐‘ฅ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘ฅ2 โ‰ฅ 0, ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒโ€ฒ โˆ’ ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ โ‰ฅ 0 .
The solution of this problem are:
๐‘ฅ๐‘ฅ๏ฟฝ1 = (2,5,6,9)and ๐‘ฅ๐‘ฅ๏ฟฝ2 = (2,3,5,8).
Example 4.2:
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๏ฟฝ(1,6,9)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 โจ(2,3,8)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ2 ๏ฟฝ,
๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ก๐‘ก๐‘ก๐‘ก (2,3,4)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 โจ(1,2,3) โŠ— ๐‘ฅ๐‘ฅ๏ฟฝ2 = (6,16,30),
(โˆ’1,1,2)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 โจ(1,3,4)โจ‚๐‘ฅ๐‘ฅ๏ฟฝ1 = (1,17,30),
๐‘ฅ๐‘ฅ๏ฟฝ1 , ๐‘ฅ๐‘ฅ๏ฟฝ1 โ‰ฅ 0.
3263
R. Saneifard, N. Jafarloo
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๏ฟฝ(1,6,9)โจ‚(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ1 โ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ )โจ(2,3,8)โจ‚(๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ2 โ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ )๏ฟฝ,
๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘ ๐‘  ๐‘ก๐‘ก๐‘ก๐‘ก (2,3,4)โจ‚(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ1 โ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ )โจ(1,2,3) โŠ— (๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ2 โ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ ) = (6,16,30),
(โˆ’1,1,2)โจ‚(๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ1 โ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ )โจ(1,3,4)โจ‚(๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ2 โ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ ) = (1,17,30),
(๐‘ฅ๐‘ฅ2 , ๐‘ฅ๐‘ฅ2 โ€ฒ , ๐‘ฅ๐‘ฅ2 โ€ฒโ€ฒ ), (๐‘ฅ๐‘ฅ1 , ๐‘ฅ๐‘ฅ1 โ€ฒ , ๐‘ฅ๐‘ฅ1 โ€ฒโ€ฒ ) โ‰ฅ 0.
Conclusion:
In this paper we concentrate on a full fuzzy linear programming problem,we solve this problem by using a
kind of defuzzification method.By using the proposed method the fuzzy optimal solution of FFLP problems is
obtained. The proposed method is very easy to understand and to apply for fully fuzzy linear systems occurring
in real life situation.
REFERENCES
[1] Ebrahimnejad, A., S.H. Nasseri, 2009. Using complementray slackness property to solve linear
programming with fuzzy parameters, Fuzzy information and Engineering, 3: 233-245.
[2] Ebrahimnejad, A., S.H. Nasseri, F. Hosseinzadeh Lotfi, M. Soltanifar, 2010. A primalโ€“ dual method for
linear programming problems with fuzzy variables, European Journal of Industrial Engineering, 4(2): 189209.
[3] Ebrahimnejad, A., S.H. Nasseri, F. Hosseinzadeh Lotfi, 2010. Bounded linear programs with trapezoidal
fuzzy numbers, Internatioal Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18(3): 269286.
[4] Ebrahimnejad, A., S.H. Nasseri, 2010. A dual simplex method for bounded linear programmes with
fuzzynumbers, International Journal of Mathematics in Operational Research, 2(6): 762-779.
[5] Ebrahimnejad, A., S.H. Nasseri, S.M. Mansourzadeh, 2011.Bounded primal simplex algorithm for bounded
Linear programming with fuzzy cost coefficients, International Journal of operations research and
information systems, 2(1): 100-124.
[6] Lotfi, F.H., T. Allahviranloo, M.A. Jondabeha, and L. Alizadeh, 2009. Solving A fully fuzzy linear
programming Using Lexicography Method and Fuzzy Approximate Solution, AppliedMathematical
Modelling, 33: 3151-3156.
[7] Maleki, H.R., 2002. Ranking Functions and Their Applications to Fuzzy Linear Programming, Far East
Journal Of Mathematical Sciences, 4: 283-301.
[8] Zimmermann, H.J., 1978. Fuzzy programming and linear programming with several objective functions,
Fuzzy Sets and Systems, 1: 45-55.
[9] Buckley, J., and T. Feuring, 2000. Evolutionary Algorithm Solution to Fuzzy Problems: Fuzzy Linear
Programming, Fuzzy Sets and Systems, 109: 35-53.
[10] Zadeh, L.A., 1965. Fuzzy sets, Information and Control 8: 338-353.http://dx.doi.org/10.1016/S00199958(65)90241-X.
[11] Campos, L., and J.L. Verdegay, 1989. Linear programming problems and ranking of fuzzy numbers, Fuzzy
Sets And Systems, 32: 1-11.
[12] Dehghan, M., B. Hashemi, M. Ghatee, 2006. Computational methods for solving fully fuzzy linear systems,
Appl. Math.Comput., 179: 328-343.
[13] Bellman, R.E., L.A. Zadeh, 1970. Decision Making in A Fuzzy Environment, Management Science, 17:
141-164.