Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
AENSI Journals
Advances in Environmental Biology
Journal home page: http://www.aensiweb.com/aeb.html
Selecting the best environment-watershed plan with solving full fuzzy linear
programming
R. Saneifard, N. Jafarloo
Department of Mathematics, Urmia Branch, Islamic Azad University, Urmia, Iran.
ARTICLE INFO
Article history:
Received 23 August 2013
Received in revised form 24 October
2013
Accepted 5 October 2013
Available online 14 November 2013
ABSTRACT
Fuzzy linear programming problems have an essential role in fuzzy modeling, which
can formulate uncertainty in actual environment. In this paper after introducing fully
fuzzy linear programming(FFLP), a new method to solve it is proposed. It is very
easy to understand and to apply for fully fuzzy linear systems occurring in real life
situation as compared to the existing methods. To illustrate the proposed method
numerical examples are solved.
Key words:
Fully fuzzy linear programming,
Trapezoidal fuzzy numbers, Ranking
function.
© 2013 AENSI Publisher All rights reserved.
INTRODUCTION
Linear programming (LP) is one of the most frequently applied operations research techniques. In the real
world situations a linear programming model involves a lot of parameters whose values are assigned by experts.
However both experts and decision makers frequently do not precisely know the value of those parameters.
Therefore it is useful to consider the knowledge of experts about the parameters as fuzzy data [10]. Using the
concept of decision making in fuzzy environmentgiven by Bellman and Zade [13]. The first formulation of
fuzzy linear programming (FLP) is proposed by Zimmermann [8]. Afterwards, many authors have considered
various kinds of FLP problems and have proposed several approaches for solving these problems [1,2,3,4,5].
Fuzzy set theory has been applied to many disciplines such as control theory and management science,
mathematical modeling and industrial applications. The concept of fuzzy linear programming (FLP) on general
level was first proposed by Tanaka et al. Afterwards, many authors considered various types of FLP problems
and proposed several approaches for solving this problem. The fuzzy linear programming problem in which all
parameters as well as the variables are represented by fuzzy numbers is known as FFLP problems. Buckley and
Feuring [9] proposed amethod to find the solution for a fully fuzzified linear programming problem by changing
the objective function into a multiobjective LP problem. Allahviranloo et al proposed a method based on
ranking function for solving FFLP problems. Maleki [7] proposed a method for solving LP problems with
vagueness in constraints by using ranking function. The main disadvantage of the solution which is obtained by
existing methods is that it does not satisfy the constraints exactly. Linear system of equations play a major role
in various financial applications. Dehghan et al [12] proposed a fuzzy linear programming approach for finding
the exact solution of fully fuzzy linear system of equations which is applicable only if all the elements of the
coefficient matrix are nonnegative fuzzy numbers. Lotfi et al [6] proposed a new method to find the fuzzy
optimal solution of FFLP problems with equality constraints which can be applied only if the elements of the
coefficient matrix are symmetric fuzzy numbers and the obtained solution are approximate but not exact. Our
main in this paper introduce a new method for solving the FFLP problems with using ranking function.
Moreover, we illustrated our method with an example.
The paper is organized as follows: In Section 2, some basic definitions between two trapezoidal fuzzy
numbers are reviewed. In Section 3, after introducing FFLP, a new method to solve it is proposed. In Section 4,
numerical examples are solved to show the efficiency of the proposed method. Ends this paper with a
conclusion.
Preliminaries:
In this section some basic definitions of fuzzy set theory are reviewed.
Corresponding Author: R. Saneifard, N. Jafarloo, Department of Mathematics, Urmia Branch, Islamic Azad University,
Urmia, Iran.
3260
R. Saneifard, N. Jafarloo
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
Definition 2.1:
The Characteristic function ๐๐๐ด๐ด of a crisp set ๐ด๐ด โ ๐๐ assigns a value either 0 or 1 to each member in ๐๐. This
function can be generalized to a function ๐๐๐ด๐ด๏ฟฝ such that the value assigned to the element of the universal set ๐๐fall
within a specified range i.e. ๐๐๐ด๐ด๏ฟฝ : ๐๐ โ [0,1]. The assigned value indicate the membership grade of the element in
the set ๐ด๐ด.
The function ๐๐๐ด๐ด๏ฟฝ is called the membership function and the set ๐ด๐ดฬ = ๏ฟฝ๏ฟฝ๐ฅ๐ฅ, ๐๐๐ด๐ด๏ฟฝ (๐ฅ๐ฅ)๏ฟฝ; ๐ฅ๐ฅ โ ๐๐๏ฟฝ is called a fuzzy set.
The family of all fuzzy sets in ๐๐ is denoted by ๐น๐น(๐๐).
Definition 2.2:
A fuzzy number à is said to be non-negative fuzzy number if and only ๐๐à (๐ฅ๐ฅ) = 0 โ ๐ฅ๐ฅ< 0. The set of nonnegative fuzzy numbers may be represented by ๐น๐น(๐
๐
+).
Definition2.3:
A fuzzy number à = (a,b,c,d) is said to be a trapezoidal fuzzy number if its membership function is given
by , where aโค ๐๐ โค ๐๐ โค ๐๐
0,
โง ๐ฅ๐ฅโ๐๐
โช ๐๐โ๐๐ ,
๐๐Ã (๐ฅ๐ฅ)= 1,
โจ ๐๐โ๐ฅ๐ฅ
โช ๐๐โ๐๐ ,
โฉ 0,
๐ฅ๐ฅ < ๐๐ ,
๐๐ โค ๐ฅ๐ฅ < ๐๐,
๐๐ โค ๐ฅ๐ฅ โค ๐๐,
๐๐ < ๐ฅ๐ฅ โค ๐๐,
๐ฅ๐ฅ > ๐๐.
Definition 2.4:
A trapezoidal fuzzy number à = (a,b,c,d) is said to be non-negative (non-positive) trapezoidal fuzzy
number i.e., Ãโฅ 0(Ã โค 0) if and only ifaโฅ 0 (๐๐ โค 0). The set of non-negative trapezoidal fuzzy numbers can be
represented by ๐๐๐๐(๐
๐
+).
Definition 2.5:
Two trapezoidal fuzzy numberÃ1 =(a,b,c,d) and Ã2 =(e,f,g,h) are said to be equal i.e., Ã1 =Ã2 if and only if
a=e, b=f, c=g, d=h.
Definition 2.6:
A fuzzy number ๐ด๐ดฬ is called N- zero fuzzy number , denoted by
๐ด๐ดฬ โก 0 if its membership function ๐๐๐ด๐ด๏ฟฝ (๐ฅ๐ฅ) satisfies
๐๐๐ด๐ด๏ฟฝ (0โ)=๐๐๐ด๐ด๏ฟฝ (0+)= ๐๐๐ด๐ด๏ฟฝ (0) โ 0. Henceforth a trapezoidal fuzzy number
๐ด๐ดฬ= (a,b,c,d)โก 0 if and only if : a< 0 <d.
Remark 2.1:
A trapezoidal fuzzy number that is not positive, not negative and not zero is a N-zero trapezoidal fuzzy
number.
Remark 2.2:
A trapezoidal fuzzy number is a triangular fuzzy number if b=c and a N-zero triangular fuzzy number if
a< 0< d ; b=c.
Definition 2.7:
letÃ1 =(a,b,c,d) and Ã2 =(e,f,g,h) be two non-negative trapezoidal fuzzy number then
i) Ã1 โจ Ã2 = (a,b,c,d)โจ(e,f,g,h) = (a+e, b+f, c+g, d+h),
ii) - Ã1 = -(a,b,c,d)= (-d, -c, -b, -a),
iii) Ã1 โ Ã2 = (a,b,c,d)โ (e,f,g,h) = (a-h, b-g, c-f, d-e),
Remark 2.3:
Let Ã1 = (๐๐, ๐๐, ๐๐, ๐๐) and Ã2 = (๐๐, ๐๐, ๐๐, โ)be two unrestricted trapezoidal fuzzy numbers,Then:
If Ã1 , Ã2 arepositive:
(๐๐, ๐๐, ๐๐, ๐๐)โจ(๐๐, ๐๐, ๐๐, โ) = (๐๐๐๐, ๐๐๐๐, ๐๐๐๐, ๐๐โ),
If๐ด๐ดฬ1 โก 0 and ๐ด๐ดฬ2 positive:
(๐๐, ๐๐, ๐๐, ๐๐)โจ(๐๐, ๐๐, ๐๐, โ) โ
(๐๐โ, ๐๐๐๐๐๐(๐๐๐๐, ๐๐๐๐), ๐๐๐๐๐๐(๐๐๐๐, ๐๐๐๐), ๐๐โ).
3261
R. Saneifard, N. Jafarloo
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
Definition2.8:
In fact, an efficient approach for ordering elements is to define a ranking function โ: F(R)โถR which for
each fuzzy number into the real line, where a natural order exists. Let ๐ด๐ดฬ = (๐๐, ๐๐, ๐๐, ๐๐)be a trapezoidal fuzzy
๐๐+๐๐+๐๐+๐๐
.
number then โ๏ฟฝ๐ด๐ดฬ๏ฟฝ =
4
Fully fuzzy linear programming problems (FFLP):
Consider the following fully fuzzy linear programming problems with m fuzzy equality constraints and n
fuzzy variables may be formulated as follows:
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐(๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐)๐ง๐งฬ = ๐๐ฬ1 โจ๐ฅ๐ฅ๏ฟฝ1 โจ โฏ ๐๐ฬ๐๐ โจ๐ฅ๐ฅ๏ฟฝ๐๐
๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐ก๐ก๐ก๐ก
๐๐๏ฟฝ11 โจ๐ฅ๐ฅ๏ฟฝ1 โจ โฏ ๐๐๏ฟฝ1๐๐ โจ๐ฅ๐ฅ๏ฟฝ๐๐ = ๐๐๏ฟฝ1
โฎ
๐๐๏ฟฝ๐๐1 โจ๐ฅ๐ฅ๏ฟฝ1 โจ โฏ ๐๐๏ฟฝ๐๐๐๐ โจ๐ฅ๐ฅ๏ฟฝ๐๐ = ๐๐๏ฟฝ๐๐
๐ฅ๐ฅ๏ฟฝ โ ๐น๐น(๐
๐
).
The matrix form of the above equation is:
(๐๐1 )
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐(๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐)๐ง๐งฬ = ๐๐ฬ ๐๐ โจ๐๐๏ฟฝ,
๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐ก๐ก๐ก๐ก ๐ด๐ดฬโจ๐๐๏ฟฝ = ๐๐๏ฟฝ,
๐๐๏ฟฝ โ ๐น๐น(๐
๐
).
The coefficient matrix ๐ด๐ดฬ = [๐๐๏ฟฝ๐๐๐๐ ]๐๐ ×๐๐ , 1 โค ๐๐, ๐๐ โค ๐๐ is ๐๐ × ๐๐ fuzzy matrix where โ ๐๐, ๐๐, ๐๐๏ฟฝ๐๐๐๐ > 0 or ๐๐๏ฟฝ๐๐๐๐ โก
0and ๐ฅ๐ฅ๏ฟฝ๐๐ , ๐๐๏ฟฝ๐๐ โ ๐น๐น(๐
๐
). If matrix ๐ด๐ดฬ denoted by ๐ด๐ดฬ = (๐ด๐ด, ๐ด๐ดโฒ , ๐ด๐ดโฒโฒ , ๐ด๐ดโฒโฒโฒ ) that ๐ด๐ด = ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ ๏ฟฝ, ๐ด๐ดโฒ = ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ โฒ ๏ฟฝ, ๐ด๐ดโฒโฒ = ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ โฒโฒ ๏ฟฝ, ๐ด๐ดโฒโฒโฒ =
๏ฟฝ๐๐๏ฟฝ๐๐๐๐ โฒโฒโฒ ๏ฟฝ, ๐๐๏ฟฝ = (๐ฅ๐ฅ, ๐ฅ๐ฅ โฒ , ๐ฅ๐ฅ โฒโฒ , ๐ฅ๐ฅ โฒโฒโฒ ), ๐๐๏ฟฝ = (๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ) then we have:
โฒ
โฒโฒ
โฒโฒโฒ )
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐(๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐)๐ง๐งฬ = (๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ) ๏ฟฝ(๐ฅ๐ฅ,
๐ฅ๐ฅ โฒ , ๐ฅ๐ฅ โฒโฒ , ๐ฅ๐ฅ โฒโฒโฒ ),
๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๐ก๐ก๐ก๐ก (๐ด๐ด, ๐ด๐ดโฒ , ๐ด๐ดโฒโฒ , ๐ด๐ดโฒโฒโฒ )โจ(๐ฅ๐ฅ, ๐ฅ๐ฅ โฒ , ๐ฅ๐ฅ โฒโฒ , ๐ฅ๐ฅ โฒโฒโฒ ) = (๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ),
(๐ฅ๐ฅ, ๐ฅ๐ฅ , ๐ฅ๐ฅ , ๐ฅ๐ฅ โฝ 0.
If S, T are two matrices defined as follows:
S= ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ โก 0๏ฟฝ, T= ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ โฅ 0๏ฟฝ
And ๐ผ๐ผ +, ๐ผ๐ผโare indexes where:
๐ผ๐ผ+ = {๐๐|๐๐ฬ๐๐ โฅ 0} , ๐ผ๐ผโ = {๐๐|๐๐ฬ๐๐ โก 0}
๐ผ๐ผ = {๐ผ๐ผ+, ๐ผ๐ผโ}
And we have two vectors:
๐๐๏ฟฝ = ๏ฟฝ๐ฅ๐ฅ๏ฟฝ๐๐ ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ โก 0๏ฟฝ ,
๐๐๏ฟฝ = ๏ฟฝ๐ฅ๐ฅ๏ฟฝ๐๐ ๏ฟฝ๐๐๏ฟฝ๐๐๐๐ โฅ 0๏ฟฝ
(๐๐
)
With these definitions we rewrite problem 1 as:
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐(๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐)๐ง๐งฬ = โ๐๐โ๐ผ๐ผ + ๐๐ฬ๐๐ โจ๐ฅ๐ฅ๏ฟฝ๐๐ โจ โ๐๐โ๐ผ๐ผ โ ๐๐ฬ๐๐ โจ๐ฅ๐ฅ๏ฟฝ๐๐ ,
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ก๐ก๐ก๐ก
๐๐ฬโจ๐๐๏ฟฝ โจ ๐๐๏ฟฝโจ๐๐๏ฟฝ = ๐๐๏ฟฝ,
๏ฟฝ
๏ฟฝ
๐๐, ๐๐ โฝ 0.
And
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ (๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐)๐๐๏ฟฝ = ๏ฟฝ(๐๐๐๐ , ๐๐๐๐ โฒ , ๐๐๐๐ โฒโฒ , ๐๐๐๐ โฒโฒโฒ )โจ(๐ฅ๐ฅ๐๐ , ๐ฅ๐ฅ๐๐ โฒ , ๐ฅ๐ฅ๐๐ โฒโฒ , ๐ฅ๐ฅ๐๐ โฒโฒโฒ )
โ
๐๐โ๐ผ๐ผ +
๏ฟฝ(๐๐๐๐ , ๐๐๐๐ , ๐๐๐๐ , ๐๐๐๐ โฒโฒโฒ )โจ(๐ฅ๐ฅ๐๐ , ๐ฅ๐ฅ๐๐ โฒ , ๐ฅ๐ฅ๐๐ โฒโฒ , ๐ฅ๐ฅ๐๐ โฒโฒโฒ ),
โฒ
๐๐โ๐ผ๐ผ โ
โฒโฒ
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ก๐ก๐ก๐ก (๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ )โจ(๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ )โจ(๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ )โจ(๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ) = (๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ),
โฒ
(๐๐, ๐๐ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ), (๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ) โฝ 0.
By using the arithmetic operations, defined in sect 2, we have:
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ (๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐)๐๐๏ฟฝ =
โ๐๐โ๐ผ๐ผ(๐๐๐๐ ๐ฅ๐ฅ๐๐ + ๐๐๐๐ ๐ฅ๐ฅ๐๐ โฒโฒโฒ ,
๐๐๐๐ โฒ ๐ฅ๐ฅ๐๐ โฒ + ๐๐๐๐๐๐(๐๐๐๐ โฒ ๐ฅ๐ฅ๐๐ โฒโฒ , ๐๐๐๐ โฒ ๐ฅ๐ฅ๐๐ โฒ ), ๐๐๐๐ โฒโฒ ๐ฅ๐ฅ๐๐ โฒโฒ +
๐๐๐๐๐๐(๐๐๐๐ โฒโฒ ๐ฅ๐ฅ๐๐ โฒโฒ , ๐๐๐๐ โฒโฒ ๐ฅ๐ฅ๐๐ โฒ ), ๐๐๐๐ โฒโฒโฒ ๐ฅ๐ฅ๐๐ โฒโฒโฒ + ๐๐๐๐ โฒโฒโฒ ๐ฅ๐ฅ๐๐ โฒโฒโฒ ),
โฒโฒโฒ
โฒ โฒโฒ โฒ โฒ )
โฒ โฒ
โฒโฒ โฒโฒ โฒโฒ โฒ )
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ก๐ก๐ก๐ก ๐๐๐๐ + ๐๐๐๐ , ๐๐๐๐๐๐(๐๐ ๐๐ , ๐๐ ๐๐ + ๐๐ ๐๐ , ๐๐๐๐๐๐(๐๐ ๐๐ , ๐๐ ๐๐ + ๐๐ โฒโฒ ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ๐๐ โฒโฒโฒ + ๐๐ โฒโฒโฒ ๐๐ โฒโฒโฒ
= (๐๐, ๐๐ โฒ , ๐๐ โฒโฒ , ๐๐ โฒโฒโฒ ),
โฒ
โฒโฒ
โฒโฒโฒ
โฒ
โฒโฒ
โฒโฒโฒ
(๐๐, ๐๐ , ๐๐ , ๐๐ ), (๐๐, ๐๐ , ๐๐ , ๐๐ ) โฝ 0 .
Now using Definitions 2.5 and 2.8 the fuzzy linear programming problem can be converted into the
following crisp linear programming problem.
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ (๐๐๐๐ ๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐) โ(โ๐๐โ๐ผ๐ผ (๐๐๐๐ ๐ฅ๐ฅ๐๐ + ๐๐๐๐ ๐ฅ๐ฅ๐๐ โฒโฒโฒ ,
โฒ โฒ
๐๐๐๐ ๐ฅ๐ฅ๐๐ + ๐๐๐๐๐๐(๐๐๐๐ โฒ ๐ฅ๐ฅ๐๐ โฒโฒ , ๐๐๐๐ โฒ ๐ฅ๐ฅ๐๐ โฒ ), ๐๐๐๐ โฒโฒ ๐ฅ๐ฅ๐๐ โฒโฒ +
๐๐๐๐๐๐(๐๐๐๐ โฒโฒ ๐ฅ๐ฅ๐๐ โฒโฒ , ๐๐๐๐ โฒโฒ ๐ฅ๐ฅ๐๐ โฒ ), ๐๐๐๐ โฒโฒโฒ ๐ฅ๐ฅ๐๐ โฒโฒโฒ +
โฒโฒโฒ โฒโฒโฒ ))
๐๐๐๐ ๐ฅ๐ฅ๐๐ ,
๐๐๐๐ โฒโฒโฒ โจ๐๐๐๐ = ๐๐,
๐๐๐๐๐๐(๐๐ โฒ ๐๐ โฒโฒ , ๐๐ โฒ ๐๐ โฒ ) + ๐๐ โฒ ๐๐ โฒ = ๐๐ โฒ ,
3262
R. Saneifard, N. Jafarloo
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
๐๐๐๐๐๐(๐๐ โฒโฒ ๐๐ โฒโฒ , ๐๐ โฒโฒ ๐๐ โฒ ) + ๐๐ โฒโฒ ๐๐ โฒโฒ = ๐๐ โฒโฒ ,
๐๐ โฒโฒโฒ ๐๐ โฒโฒโฒ + ๐๐ โฒโฒโฒ ๐๐ โฒโฒโฒ = ๐๐ โฒโฒโฒ = ๐๐ โฒโฒโฒ ,
๐ฅ๐ฅ๐๐ โฒ โ ๐ฅ๐ฅ๐๐ โฅ 0, ๐ฅ๐ฅ๐๐ โฒโฒ โ ๐ฅ๐ฅ๐๐ โฒ โฅ 0, ๐ฅ๐ฅ๐๐ โฒโฒโฒ โ ๐ฅ๐ฅ๐๐ โฒโฒ โฅ 0.
Now solve the crisp linear programming problem, obtained in above to find the optimal solution.
If๐๐ โ is optimal solution then for all ๐๐ โ ๐๐ we have:
โ
๐ถ๐ถ๐๐ โค ๐ถ๐ถ๐ถ๐ถ
But if any ๐๐๏ฟฝ = (๐ฅ๐ฅ๐๐ , ๐ฅ๐ฅ๐๐ โฒ , ๐ฅ๐ฅ๐๐ โฒโฒ , ๐ฅ๐ฅ๐๐ โฒโฒโฒ ) it is assumed as fuzzy number, we have:
โ๏ฟฝ๐ถ๐ถฬ โจ๐๐๏ฟฝ โ ๏ฟฝ โค โ๏ฟฝ๐ถ๐ถฬ โจ๐๐๏ฟฝ๏ฟฝ,
(in case of minimization problem),
โ๏ฟฝ๐ถ๐ถฬ โจ๐๐๏ฟฝ โ ๏ฟฝ โฅ โ๏ฟฝ๐ถ๐ถฬ โจ๐๐๏ฟฝ๏ฟฝ,
(in case of maximization problem).
Then
(in case of minimization problem),
๐ถ๐ถฬ โจ๐๐๏ฟฝ โ โผ ๐ถ๐ถฬ โจ๐๐๏ฟฝ,
(in case of maximization problem).
๐ถ๐ถฬ โจ๐๐๏ฟฝ โ โฝ ๐ถ๐ถฬ โจ๐๐๏ฟฝ,
And this means that ๐๐๏ฟฝ โ = (๐ฅ๐ฅ โ , ๐ฅ๐ฅ โฒโ , ๐ฅ๐ฅ โฒโฒโ , ๐ฅ๐ฅ โฒโฒโฒโ ) is an optimal solution for S.
Remark: if ๐๐ โ be optimal solution of problem (๐๐1 ), then we have ๐๐ โ = โ๏ฟฝ๐๐๏ฟฝ โ ๏ฟฝthat ๐๐๏ฟฝ โ = ๐ถ๐ถฬ โจ๐๐๏ฟฝ โ .
Examples:
Examples 4.1:
let us consider the following FFLS and solve it by the proposed method.
(1,3,6,8)โจ๐ฅ๐ฅ๏ฟฝ1 โจ(3,4,6,8)โจ๐ฅ๐ฅ๏ฟฝ2 = (1,27,66,124),
(3,4,5,6)โจ๐ฅ๐ฅ๏ฟฝ1 โจ(4,5,8,10)โจ๐ฅ๐ฅ๏ฟฝ2 = (10,35,70,125),
๐ฅ๐ฅ๏ฟฝ1 , ๐ฅ๐ฅ๏ฟฝ2 โฅ 0.
(1,3,6,8)โจ(๐ฅ๐ฅ1 , ๐ฅ๐ฅ1 โฒ , ๐ฅ๐ฅ1 โฒโฒ , ๐ฅ๐ฅ1 โฒโฒโฒ )โจ(3,4,6,8)โจ(๐ฅ๐ฅ2 , ๐ฅ๐ฅ2 โฒ , ๐ฅ๐ฅ2 โฒโฒ , ๐ฅ๐ฅ2 โฒโฒโฒ ) = (1,27,66,124),
(3,4,5,6)โจ(๐ฅ๐ฅ1 , ๐ฅ๐ฅ1 โฒ , ๐ฅ๐ฅ1 โฒโฒ , ๐ฅ๐ฅ1 โฒโฒโฒ )โจ(4,5,8,10)โจ(๐ฅ๐ฅ2 , ๐ฅ๐ฅ2 โฒ , ๐ฅ๐ฅ2 โฒโฒ , ๐ฅ๐ฅ2 โฒโฒโฒ ) = (10,35,70,125),
(๐ฅ๐ฅ1 , ๐ฅ๐ฅ1 โฒ , ๐ฅ๐ฅ1 โฒโฒ , ๐ฅ๐ฅ1 โฒโฒโฒ ), (๐ฅ๐ฅ2 , ๐ฅ๐ฅ2 โฒ , ๐ฅ๐ฅ2 โฒโฒ , ๐ฅ๐ฅ2 โฒโฒโฒ ) โฅ 0.
โฒ
โฒ
โฒโฒ
(๐ฅ๐ฅ1 + 3๐ฅ๐ฅ2 , 3๐ฅ๐ฅ1 + ๐ฅ๐ฅ2 , 6๐ฅ๐ฅ1 + ๐ฅ๐ฅ2 โฒโฒ , 8๐ฅ๐ฅ1 โฒโฒโฒ + ๐ฅ๐ฅ2 โฒโฒโฒ ) = (1,27,66,124),
๏ฟฝ3๐ฅ๐ฅ1 + 4๐ฅ๐ฅ2 , 4๐ฅ๐ฅ1 โฒ + 5๐ฅ๐ฅ2 โฒ , 5๐ฅ๐ฅ1 โฒโฒ + 8๐ฅ๐ฅ2 โฒโฒ , 6๐ฅ๐ฅ1 โฒโฒโฒ + 10๐ฅ๐ฅ2 โฒโฒโฒ ๏ฟฝ = (10,35,70,125),
(๐ฅ๐ฅ1 , ๐ฅ๐ฅ1 โฒ , ๐ฅ๐ฅ1 โฒโฒ , ๐ฅ๐ฅ1 โฒโฒโฒ ), (๐ฅ๐ฅ2 , ๐ฅ๐ฅ2 โฒ , ๐ฅ๐ฅ2 โฒโฒ , ๐ฅ๐ฅ2 โฒโฒโฒ ) โฅ 0.
Then:
๐ฅ๐ฅ1 + 3๐ฅ๐ฅ2 = 1,
3๐ฅ๐ฅ1 โฒ + ๐ฅ๐ฅ2 โฒ = 27,
6๐ฅ๐ฅ1 โฒโฒ + ๐ฅ๐ฅ2 โฒโฒ = 66,
8๐ฅ๐ฅ1 โฒโฒโฒ + ๐ฅ๐ฅ2 โฒโฒโฒ = 124,
3๐ฅ๐ฅ1 + 4๐ฅ๐ฅ2 = 10,
4๐ฅ๐ฅ1 โฒ + 5๐ฅ๐ฅ2 โฒ = 35,
5๐ฅ๐ฅ1 โฒโฒ + 8๐ฅ๐ฅ2 โฒโฒ = 70,
6๐ฅ๐ฅ1 โฒโฒโฒ + 10๐ฅ๐ฅ2 โฒโฒโฒ = 125,
Now the above linear system can be solved by using two phase method:
Minimize (๐๐1 + ๐๐2 + ๐๐1 โฒ + ๐๐2 โฒ + ๐๐1 โฒโฒ + ๐๐2 โฒโฒ + ๐๐1 โฒโฒโฒ + ๐๐2 โฒโฒโฒ ),
๐ฅ๐ฅ1 + 3๐ฅ๐ฅ2 + ๐๐1 = 1,
3๐ฅ๐ฅ1 โฒ + ๐ฅ๐ฅ2 โฒ +๐๐2 = 27,
6๐ฅ๐ฅ1 โฒโฒ + ๐ฅ๐ฅ2 โฒโฒ + ๐๐1 โฒ = 66,
8๐ฅ๐ฅ1 โฒโฒโฒ + ๐ฅ๐ฅ2 โฒโฒโฒ +๐๐2 โฒ = 124,
3๐ฅ๐ฅ1 + 4๐ฅ๐ฅ2 + ๐๐1 โฒโฒ = 10,
4๐ฅ๐ฅ1 โฒ + 5๐ฅ๐ฅ2 โฒ + ๐๐2 โฒโฒ = 35,
5๐ฅ๐ฅ1 โฒโฒ + 8๐ฅ๐ฅ2 โฒโฒ + ๐๐1 โฒโฒโฒ = 70,
6๐ฅ๐ฅ1 โฒโฒโฒ + 10๐ฅ๐ฅ2 โฒโฒโฒ + ๐๐2 โฒโฒโฒ = 125,
โฒ
๐ฅ๐ฅ1 โ ๐ฅ๐ฅ1 โฅ 0, ๐ฅ๐ฅ1 โฒโฒ โ ๐ฅ๐ฅ1 โฒ โฅ 0, ๐ฅ๐ฅ1 โฒโฒโฒ โ ๐ฅ๐ฅ1 โฒโฒ โฅ 0,
โฒ
โฒโฒ
โฒ
๐ฅ๐ฅ2 โ ๐ฅ๐ฅ2 โฅ 0, ๐ฅ๐ฅ2 โ ๐ฅ๐ฅ2 โฅ 0, ๐ฅ๐ฅ2 โฒโฒโฒ โ ๐ฅ๐ฅ2 โฒโฒ โฅ 0 .
The solution of this problem are:
๐ฅ๐ฅ๏ฟฝ1 = (2,5,6,9)and ๐ฅ๐ฅ๏ฟฝ2 = (2,3,5,8).
Example 4.2:
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๏ฟฝ(1,6,9)โจ๐ฅ๐ฅ๏ฟฝ1 โจ(2,3,8)โจ๐ฅ๐ฅ๏ฟฝ2 ๏ฟฝ,
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ก๐ก๐ก๐ก (2,3,4)โจ๐ฅ๐ฅ๏ฟฝ1 โจ(1,2,3) โ ๐ฅ๐ฅ๏ฟฝ2 = (6,16,30),
(โ1,1,2)โจ๐ฅ๐ฅ๏ฟฝ1 โจ(1,3,4)โจ๐ฅ๐ฅ๏ฟฝ1 = (1,17,30),
๐ฅ๐ฅ๏ฟฝ1 , ๐ฅ๐ฅ๏ฟฝ1 โฅ 0.
3263
R. Saneifard, N. Jafarloo
Advances in Environmental Biology, 7(11) Oct 2013, Pages: 3259-3263
๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐๐ ๏ฟฝ(1,6,9)โจ(๐ฅ๐ฅ1 , ๐ฅ๐ฅ1 โฒ , ๐ฅ๐ฅ1 โฒโฒ )โจ(2,3,8)โจ(๐ฅ๐ฅ2 , ๐ฅ๐ฅ2 โฒ , ๐ฅ๐ฅ2 โฒโฒ )๏ฟฝ,
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ก๐ก๐ก๐ก (2,3,4)โจ(๐ฅ๐ฅ1 , ๐ฅ๐ฅ1 โฒ , ๐ฅ๐ฅ1 โฒโฒ )โจ(1,2,3) โ (๐ฅ๐ฅ2 , ๐ฅ๐ฅ2 โฒ , ๐ฅ๐ฅ2 โฒโฒ ) = (6,16,30),
(โ1,1,2)โจ(๐ฅ๐ฅ1 , ๐ฅ๐ฅ1 โฒ , ๐ฅ๐ฅ1 โฒโฒ )โจ(1,3,4)โจ(๐ฅ๐ฅ2 , ๐ฅ๐ฅ2 โฒ , ๐ฅ๐ฅ2 โฒโฒ ) = (1,17,30),
(๐ฅ๐ฅ2 , ๐ฅ๐ฅ2 โฒ , ๐ฅ๐ฅ2 โฒโฒ ), (๐ฅ๐ฅ1 , ๐ฅ๐ฅ1 โฒ , ๐ฅ๐ฅ1 โฒโฒ ) โฅ 0.
Conclusion:
In this paper we concentrate on a full fuzzy linear programming problem,we solve this problem by using a
kind of defuzzification method.By using the proposed method the fuzzy optimal solution of FFLP problems is
obtained. The proposed method is very easy to understand and to apply for fully fuzzy linear systems occurring
in real life situation.
REFERENCES
[1] Ebrahimnejad, A., S.H. Nasseri, 2009. Using complementray slackness property to solve linear
programming with fuzzy parameters, Fuzzy information and Engineering, 3: 233-245.
[2] Ebrahimnejad, A., S.H. Nasseri, F. Hosseinzadeh Lotfi, M. Soltanifar, 2010. A primalโ dual method for
linear programming problems with fuzzy variables, European Journal of Industrial Engineering, 4(2): 189209.
[3] Ebrahimnejad, A., S.H. Nasseri, F. Hosseinzadeh Lotfi, 2010. Bounded linear programs with trapezoidal
fuzzy numbers, Internatioal Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18(3): 269286.
[4] Ebrahimnejad, A., S.H. Nasseri, 2010. A dual simplex method for bounded linear programmes with
fuzzynumbers, International Journal of Mathematics in Operational Research, 2(6): 762-779.
[5] Ebrahimnejad, A., S.H. Nasseri, S.M. Mansourzadeh, 2011.Bounded primal simplex algorithm for bounded
Linear programming with fuzzy cost coefficients, International Journal of operations research and
information systems, 2(1): 100-124.
[6] Lotfi, F.H., T. Allahviranloo, M.A. Jondabeha, and L. Alizadeh, 2009. Solving A fully fuzzy linear
programming Using Lexicography Method and Fuzzy Approximate Solution, AppliedMathematical
Modelling, 33: 3151-3156.
[7] Maleki, H.R., 2002. Ranking Functions and Their Applications to Fuzzy Linear Programming, Far East
Journal Of Mathematical Sciences, 4: 283-301.
[8] Zimmermann, H.J., 1978. Fuzzy programming and linear programming with several objective functions,
Fuzzy Sets and Systems, 1: 45-55.
[9] Buckley, J., and T. Feuring, 2000. Evolutionary Algorithm Solution to Fuzzy Problems: Fuzzy Linear
Programming, Fuzzy Sets and Systems, 109: 35-53.
[10] Zadeh, L.A., 1965. Fuzzy sets, Information and Control 8: 338-353.http://dx.doi.org/10.1016/S00199958(65)90241-X.
[11] Campos, L., and J.L. Verdegay, 1989. Linear programming problems and ranking of fuzzy numbers, Fuzzy
Sets And Systems, 32: 1-11.
[12] Dehghan, M., B. Hashemi, M. Ghatee, 2006. Computational methods for solving fully fuzzy linear systems,
Appl. Math.Comput., 179: 328-343.
[13] Bellman, R.E., L.A. Zadeh, 1970. Decision Making in A Fuzzy Environment, Management Science, 17:
141-164.