Download ADA4960-1 数据手册DataSheet 下载

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Spectrum analyzer wikipedia , lookup

Utility frequency wikipedia , lookup

Power inverter wikipedia , lookup

Rectifier wikipedia , lookup

Flip-flop (electronics) wikipedia , lookup

Transmission line loudspeaker wikipedia , lookup

Scattering parameters wikipedia , lookup

Bode plot wikipedia , lookup

Mains electricity wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Buck converter wikipedia , lookup

Regenerative circuit wikipedia , lookup

Amplifier wikipedia , lookup

Power electronics wikipedia , lookup

Schmitt trigger wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Tube sound wikipedia , lookup

Heterodyne wikipedia , lookup

Two-port network wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Metadyne wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Analog-to-digital converter wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
5 GHz, Low Distortion
ADC Driver/Line Driver
ADA4960-1
FEATURES
FUNCTIONAL BLOCK DIAGRAM
−3 dB bandwidth of 5 GHz (AV = 6 dB)
Single resistor programmable gain: 0 dB to 18 dB
Differential or single-ended input to differential output
Low harmonic distortion (HD2/HD3 @ AV = 6 dB)
−88/−69 dBc @ 250 MHz
−77/−66 dBc @ 500 MHz
−73/−72 dBc @ 1 GHz
IMD3 @ 1 GHz = −63 dBc
Slew rate
8700 V/μs (AV = 6 dB, 2 V step)
6600 V/μs (AV = 18 dB, 2 V step)
Fast settling: 1 ns to 1%, 1.4 ns to 0.1%
Fast overdrive recovery: 6.7 ns to 1%, 9.3 ns to 0.5%
Single-supply operation: 5 V
0.1 dB gain flatness to 300 MHz
DC level translation
Available in 16-lead LFCSP
VCC
BIAS CELL
PD
VOCM
VIP
IIP
RG
VOP
IIN
VON
GND
ADA4960-1
08458-001
VIN
Figure 1.
1.2
AV = 6dB
1.0
AV = 18dB
0.8
0.6
AV = 12dB
80%
Differential ADC drivers for giga-sample ADCs
GBPS line drivers with pre-emphasis
High speed data acquisition
Electronic surveillance countermeasures
Pulse capture and conditioning
Oscilloscopes
Satellite communications
Single-ended-to-differential converters
RF/IF gain blocks
0.2
0
–0.2
–0.4
AV (dB)
6
12
18
SLEW RATE (V/µs)
8700
7700
6600
0.4
0.6
20%
–0.6
–0.8
–1.0
–1.2
–0.2
0
0.2
0.8
TIME (ns)
1.0
08458-047
APPLICATIONS
VOUT (V)
0.4
Figure 2. Rise Time, VOUT = 2 V p-p, TA = 25°C,
For AV = 6 dB, AV = 12 dB, and AV = 18 dB
GENERAL DESCRIPTION
The ADA4960-1 is a high performance, differential amplifier
optimized for RF and IF applications. It achieves better than 63 dB
IMD3 performance for frequencies up to and beyond 1 GHz,
making it an ideal driver for 8-bit to 10-bit giga-sample analogto-digital converters (ADCs).
The device is optimized for the best combination of slew rate,
bandwidth, and broadband distortion. These attributes allow it
to drive a wide variety of ADCs. It is ideally suited for driving
mixers, pin diode attenuators, SAW filters, and multi-element
discrete devices.
The buffered inputs of the ADA4960-1 isolate the gain-setting
resistor (RG) from the signal inputs, maintaining a constant 10 kΩ
input resistance, easing matching and input drive requirements.
The ADA4960-1 has a nominal 150 Ω differential output impedance.
The user accessible gain adjust and bandwidth extension features
allow configuration of the ADA4960-1 for line driver and
channel equalization applications.
The ADA4960-1 is optimized for wideband, low distortion
performance for frequencies up to and beyond 1 GHz. These
attributes, together with its adjustable gain capability, make this
device the amplifier of choice for general-purpose IF and broadband applications where low distortion, noise, and power are critical.
The quiescent current of the ADA4960-1 is typically 60 mA. When
disabled, it consumes less than 3 mA, offering excellent input-tooutput isolation.
Fabricated on an Analog Devices, Inc., high speed SiGe process,
the ADA4960-1 is available in a compact 3 mm × 3 mm, 16-lead
LFCSP. It operates over the temperature range of −40°C to +85°C.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2010 Analog Devices, Inc. All rights reserved.
www.BDTIC.com/ADI
ADA4960-1
TABLE OF CONTENTS
Features .............................................................................................. 1 Circuit Description......................................................................... 13 Applications ....................................................................................... 1 Basic Structure ............................................................................ 13 Functional Block Diagram .............................................................. 1 Applications Information .............................................................. 14 General Description ......................................................................... 1 Basic Connections ...................................................................... 14 Revision History ............................................................................... 2 Input and Output Interfacing ................................................... 14 Specifications..................................................................................... 3 Gain Adjust ................................................................................. 15 Absolute Maximum Ratings............................................................ 6 Bandwidth Extension................................................................. 15 Thermal Resistance ...................................................................... 6 ADC Interfacing ......................................................................... 16 Maximum Power Dissipation ..................................................... 6 Line Driver Applications .......................................................... 16 ESD Caution .................................................................................. 6 Overdrive and Recovery ............................................................ 17 Pin Configuration and Function Descriptions ............................. 7 Layout, Grounding, and Bypassing .............................................. 18 Typical Performance Characteristics ............................................. 8 Outline Dimensions ....................................................................... 19 Test Circuits ................................................................................. 12 Ordering Guide .......................................................................... 19 REVISION HISTORY
4/10—Revision 0: Initial Version
www.BDTIC.com/ADI
Rev. 0 | Page 2 of 20
ADA4960-1
SPECIFICATIONS
VCC = 5 V, VOCM = 2.5 V, RL = 100 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 140 MHz, T = 25°C. Inputs and outputs are ac-coupled.
Table 1.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Bandwidth for 0.1 dB Flatness
Gain Accuracy
Gain Supply Sensitivity
Gain Temperature Sensitivity
Slew Rate
Settling Time
Overdrive Recovery Time
Reverse Isolation (S12)
INPUT/OUTPUT CHARACTERISTICS
Output Common Mode
VOCM Adjustment Range
Input Common-Mode Range
Maximum Output Voltage Swing
Output Common-Mode Offset
Output Common-Mode Drift
Output Differential Offset Voltage
Common-Mode Rejection Ratio (CMRR)
Output Differential Offset Drift
Input Bias Current
Input Resistance (Differential)
Input Capacitance (Differential)
Input Resistance (Single-Ended)
Input Capacitance (Single-Ended)
Output Resistance (Differential)
Output Capacitance (Differential)
POWER INTERFACE
Supply Voltage
ENB Threshold
ENB Input Bias Current
Quiescent Current
Conditions
Min
AV = 6 dB, VOUT ≤ 1.0 V p-p
AV = 12 dB, VOUT ≤ 1.0 V p-p
AV = 18 dB, VOUT ≤ 1.0 V p-p
VOUT ≤ 1.0 V p-p
RG = 95.3 Ω
VS ± 5%
−40°C to +85°C
AV = 6 dB, VOUT = 2 V step, 20% to 80%
AV = 12 dB, VOUT = 2 V step, 20% to 80%
AV = 18 dB, VOUT = 2 V step, 20% to 80%
AV = 6 dB, VOUT = 1 V step, 20% to 80%
AV = 12 dB, VOUT = 1 V step, 20% to 80%
AV = 18 dB, VOUT = 1 V step, 20% to 80%
1 V step to 1%
1 V step to 0.1%
VIN = 1 V to 0 V step, AV = 12 dB, VOUT ≤ 1%
VIN = 1 V to 0 V step, AV = 12 dB, VOUT ≤ 0.5%
f = ≤1 GHz
Typ
Max
5000
2000
1200
300
0.5
0.2
2.5
8700
7700
6600
7200
4900
3700
1
1.4
6.7
9.3
68
MHz
MHz
MHz
MHz
dB
dB/V
mdB/°C
V/μs
V/μs
V/μs
V/μs
V/μs
V/μs
ns
ns
ns
ns
dB
VS/2
1
2.25
1 dB compressed
Referenced to VCC/2
−40°C to +85°C
2.75
2.75
3.5
−20
+10
0.05
−36
+22
60
0.05
−20
10
0.4
5
0.8
150
1.2
−40°C to +85°C
−40°C to +85°C
AV = all gains
AV = all gains
AV = all gains
AV = all gains
4.75
2.2
Low to high
High to low
ENB high
ENBL low
ENB high
ENBL low
5.0
5.25
1.3
56
30
−180
60
2.9
www.BDTIC.com/ADI
Rev. 0 | Page 3 of 20
Unit
64
V
V
V
V p-p
mV
mV/°C
mV
dB
mV/°C
μA
kΩ
pF
kΩ
pF
Ω
pF
V
V
V
μA
μA
mA
mA
ADA4960-1
Parameter
NOISE/HARMONIC PERFORMANCE
140 MHz
Second/Third Harmonic Distortion
OIP3/IMD3
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
250 MHz
Second/Third Harmonic Distortion
OIP3/IMD3
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
500 MHz
Second/Third Harmonic Distortion
OIP3/IMD3
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
750 MHz
Second/Third Harmonic Distortion
OIP3/IMD3
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
Conditions
Min
Typ
Max
Unit
AV = 6 dB, VOUT = 0.9 V p-p
AV = 12 dB, VOUT = 0.9 V p-p
AV = 18 dB, VOUT = 0.9 V p-p
AV = 6 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 12 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 18 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 18 dB
AV = 6 dB
AV = 12 dB
AV = 18 dB
−91/−73
−86/−73
−82/−72
+33.2/−79
+33.4/−78
+33.3/−78
5.4
3.2
2.1
12.0
12.0
11.9
dBc
dBc
dBc
dBm/dBc
dBm/dBc
dBm/dBc
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
AV = 6 dB, VOUT = 0.9 V p-p
AV = 12 dB, VOUT = 0.9 V p-p
AV = 18 dB, VOUT = 0.9 V p-p
AV = 6 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 12 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 18 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 18 dB
AV = 6 dB
AV = 12 dB
AV = 18 dB
−88/−69
−81/−68
−77/−68
+32.5/−77
+32.6/−77
+32.1/−76
5.4
3.1
2.0
12.0
11.9
11.7
dBc
dBc
dBc
dBm/dBc
dBm/dBc
dBm/dBc
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
AV = 6 dB, VOUT = 0.9 V p-p
AV = 12 dB, VOUT = 0.9 V p-p
AV = 18 dB, VOUT = 0.9 V p-p
AV = 6 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 12 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 18 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 18 dB
AV = 6 dB
AV = 12 dB
AV = 18 dB
−77/−66
−71/−66
−68/−65
+30.2/−72
+29.9/−71
+29.1/−70
5.2
3.0
1.9
11.6
11.4
11.0
dBc
dBc
dBc
dBm/dBc
dBm/dBc
dBm/dBc
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
AV = 6 dB, VOUT = 0.9 V p-p
AV = 12 dB, VOUT = 0.9 V p-p
AV = 18 dB, VOUT = 0.9 V p-p
AV = 6 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 12 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 18 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 18 dB
AV = 6 dB
AV = 12 dB
AV = 18 dB
−70/−68
−67/−69
−64/−69
+28.3/−67
+27.7/−67
+26.9/−65
5.0
3.0
1.8
9.7
9.5
9.5
dBc
dBc
dBc
dBm/dBc
dBm/dBc
dBm/dBc
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
www.BDTIC.com/ADI
Rev. 0 | Page 4 of 20
ADA4960-1
Parameter
1000 MHz
Second/Third Harmonic Distortion
OIP3/IMD3
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
Conditions
Min
AV = 6 dB, VOUT = 0.9 V p-p
AV = 12 dB, VOUT = 0.9 V p-p
AV = 18 dB, VOUT = 0.9 V p-p
AV = 6 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 12 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 18 dB, VOUT = 0.9 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 18 dB
AV = 6 dB
AV = 12 dB
AV = 18 dB
Typ
−73/−72
−69/−78
−67/−85
+26.2/−63
+26.0/−63
+25.0/−61
4.8
2.7
1.6
8.0
7.7
7.6
www.BDTIC.com/ADI
Rev. 0 | Page 5 of 20
Max
Unit
dBc
dBc
dBc
dBm/dBc
dBm/dBc
dBm/dBc
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
ADA4960-1
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage, VCC
VIP, VIN
Internal Power Dissipation
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
5.25 V
VCC + 0.5 V
See Figure 3
150°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
The power dissipated in the package (PD) is the sum of the
quiescent power dissipation and the power dissipated in the
package due to the load drive. The quiescent power is the voltage
between the supply pins (VS) times the quiescent current (IS).
The power dissipated due to the load drive depends upon the
particular application. The power due to load drive is calculated
by multiplying the load current by the associated voltage drop
across the device. RMS voltages and currents must be used in
these calculations.
Airflow increases heat dissipation, effectively reducing θJA. In
addition, more metal directly in contact with the package leads/
exposed pad from metal traces, through holes, ground, and power
planes reduce θJA.
Figure 3 shows the maximum safe power dissipation of the
ADA4960-1 vs. the ambient temperature on a JEDEC standard
4-layer board.
THERMAL RESISTANCE
2.5
Table 3. Thermal Resistance
Package Type
16-Lead LFCSP (Exposed Pad)
θJA
89.5
Unit
°C/W
MAXIMUM POWER DISSIPATION
The maximum safe power dissipation in the ADA4960-1 package
is limited by the associated rise in junction temperature (TJ) on
the die. At approximately 150°C, which is the glass transition
temperature, the plastic changes its properties. Even temporarily
exceeding this temperature limit can change the stresses that the
package exerts on the die, permanently shifting the parametric
performance of the ADA4960-1. Exceeding a junction temperature
of 150°C for an extended period can result in changes in the
silicon devices, potentially causing failure.
2.0
1.5
1.0
0.5
QUIESCENT POWER
0
–40
–20
0
20
40
60
AMBIENT TEMPERATURE (°C)
80
100
08458-002
MAXIMUM POWER DISSIPATION
θJA is specified for the device (including the exposed pad) soldered
to a high thermal conductivity, 4-layer circuit board, as described
in EIA/JESD 51-7.
Figure 3. Maximum Power Dissipation vs. Ambient Temperature for 4-Layer Board
ESD CAUTION
www.BDTIC.com/ADI
Rev. 0 | Page 6 of 20
ADA4960-1
13 VOCM
14 GND
15 GND
16 PD
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VIP 1
12 VCC
ADA4960-1
IIN 3
TOP VIEW
(Not to Scale)
11 VOP
10 VON
9
VCC
VCC 8
VCC 7
NC 6
NC 5
VIN 4
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD MUST BE CONNECTED TO GND.
08458-003
IIP 2
Figure 4. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1
2
3
4
5, 6
7, 8, 9, 12
10
11
13
14, 15
16
Mnemonic
VIP
IIP
IIN
VIN
NC
VCC
VON
VOP
VOCM
GND
PD
EPAD
Description
Balanced Differential Input. This pin is internally biased to VCC/2.
Gain Setting Resistor. Connect RG between this pin and IIN.
Gain Setting Resistor. Connect RG between this pin and IIP.
Balanced Differential Input. This pin is internally biased to VCC/2.
Leave these pins unconnected.
Positive 5 V Supply Pins.
Balanced Differential Output. This pin is biased to the VOCM input voltage.
Balanced Differential Output. This pin is biased to the VOCM input voltage.
This pin is internally biased at VCC/2. As an input, this pin sets the dc VOP and VON voltages.
Ground. Connect this pin to a low impedance ground.
This pin grounded disables the part, and at 5 V, this pin turns the part on.
The exposed pad must be connected to GND.
www.BDTIC.com/ADI
Rev. 0 | Page 7 of 20
ADA4960-1
TYPICAL PERFORMANCE CHARACTERISTICS
VCC = 5 V, VOCM = 2.5 V, RL = 100 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 140 MHz, T = 25°C.
18
AV = 6dB
SPECTRAL NOISE DENSITY (nV/√Hz)
AV = 18dB
15
AV = 12dB
AV (dB)
10
AV = 6dB
5
AV = 0dB
–5
0.01
0.1
1
FREQUENCY (GHz)
10
14
AV = 12dB
12
AV = 18dB
10
8
50
08458-004
0
16
1000
FREQUENCY (MHz)
Figure 5. Small Signal Frequency Response,
Gain vs. Frequency at AV = 0 dB, AV = 6 dB, AV = 12 dB, and AV = 18 dB
Figure 8. RTO Noise Spectral Density vs. Frequency at
AV = 6 dB, AV = 12 dB, and AV = 18 dB
0.6
1.2
AV = 6dB
1.0
AV = 6dB
AV = 18dB
0.8
0.4
AV = 18dB
80%
0.2
0.6
AV = 12dB
0
AV (dB)
6
12
18
–0.2
20%
AV = 12dB
80%
0.4
VOUT (V)
VOUT (V)
100
08458-039
20
SLEW RATE (V/µs)
7200
4900
3700
0.2
0
AV (dB)
6
12
18
–0.2
–0.4
20%
–0.6
–0.4
SLEW RATE (V/µs)
8700
7700
6600
–0.8
0.4
0.2
0.6
TIME (ns)
–1.2
–0.2
08458-053
0
0
0.4
0.2
0.8
1.0
Figure 9. Rise Time, VOUT vs. Time, VOUT = 2 V p-p
Figure 6. Rise Time, VOUT vs. Time, VOUT = 1 V p-p
13
24
AV = 6dB
12
22
AV = 6dB
AV = 18dB
11
20
P1 (dB)
AV = 12dB
18
10
AV = 12dB
9
16
8
14
0
200
400
600
800
FREQUENCY (MHz)
1000
1200
08458-038
AV = 18dB
Figure 7. Noise Figure vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 18 dB
7
100
200
300
400
500
600
700
FREQUENCY (MHz)
900
1000
Figure 10. P1dB vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 18 dB
www.BDTIC.com/ADI
Rev. 0 | Page 8 of 20
800
08458-007
NOISE FIGURE (dB)
0.6
TIME (ns)
08458-054
–1.0
–0.6
–0.2
ADA4960-1
40
–55
–60
DISTORTION (dBc)
OIP3 (dBm)
35
AV = 6dB
30
AV = 12dB
AV = 18dB
–65
–70
TA = +85°C
–75
TA = +25°C
25
TA = –40°C
200
300
400
500
600
700
800
900
1000
FREQUENCY (MHz)
–85
100
08458-008
20
100
200
300
400
500
600
700
800
900
1000
FREQUENCY (MHz)
Figure 11. OIP3 vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 18 dB,
VOUT = 0.45 V p-p/Tone, 2 MHz Spacing
08458-011
–80
Figure 14. Two Tone IMD3 vs. Frequency at TA = −40°C, TA = +25°C, and
TA = +85°C, AV = 6 dB, VOUT = 0.45 V p-p/Tone, 2 MHz Spacing
40
–60
–65
35
OIP3 (dBm)
30
DISTORTION (dBc)
–70
TA = –40°C
TA = +25°C
TA = +85°C
AV = 18dB
–75
AV = 12dB
–80
AV = 6dB
–85
25
200
300
400
500
600
700
800
900
1000
FREQUENCY (MHz)
Figure 12. OIP3 vs. Frequency at AV = 6 dB, TA = −40°C, TA = +25°C, and
TA = +85°C, VOUT = 0.45 V p-p/Tone, 2 MHz Spacing
–60
–60
–65
400
500
600
700
800
900
1000
AV = 6dB
AV = 18dB
–70
AV = 12dB
–75
300
Figure 15. HD2 vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 18 dB,
VOUT = 0.9 V p-p
–55
–65
200
FREQUENCY (MHz)
DISTORTION (dBc)
DISTORTION (dBc)
–95
100
08458-040
20
100
08458-041
–90
AV = 6dB
–70
–75
AV = 12dB
–80
AV = 18dB
–80
300
400
500
600
700
FREQUENCY (MHz)
800
900
1000
–90
100
200
300
400
500
600
700
FREQUENCY (MHz)
Figure 13. Two Tone IMD3 vs. Frequency, AV = 6 dB, AV = 12 dB, and AV = 18 dB,
VOUT = 0.9 V p-p/Tone, 2 MHz Spacing
900
1000
Figure 16. HD3 vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 18 dB,
VOUT = 0.9 V p-p
www.BDTIC.com/ADI
Rev. 0 | Page 9 of 20
800
08458-013
200
08458-010
–85
100
–85
ADA4960-1
–60
70
THIRD HARMONIC DISTORTION
–65
60
–70
DISTORTION (dBc)
50
CMRR (dB)
–75
–80
SECOND HARMONIC DISTORTION
–85
40
30
20
–90
200
300
400
500
600
700
800
900
1000
FREQUENCY (MHz)
0
0.01
08458-046
–100
100
10
TA = +85°C
TA = +25°C
TA = –40°C
0.1
1
FREQUENCY (GHz)
10
08458-017
–95
Figure 20. CMRR vs. Frequency, AV = 6 dB, VOUT = 0.9 V p-p
Figure 17. HD2 and HD3 vs. Frequency at TA = −40°C, +25°C, +85°C,
AV = 6 dB, VOUT = 0.9 V p-p
–50
1.5
–55
1.0
HD2
DISTORTION (dBc)
–60
VOUT (V)
0.5
0
–0.5
–65
HD3
–70
–75
–1.0
2
4
6
8
10
12
14
16
18
20
TIME (ns)
–85
100
400
500
600
700
800
900
1000
Figure 21. HD2/HD3 vs. Frequency, Single-Ended Input,
AV = 6 dB, VOUT = 0.9 V p-p
–30
–30
f = 140MHz
f = 250MHz
f = 500MHz
f = 750MHz
f = 1GHz
–40
–50
–60
–70
–60
–70
–80
–90
–90
1.5
2.0
VOCM (V)
2.5
3.0
08458-016
–80
1.0
f = 140MHz
f = 250MHz
f = 500MHz
f = 750MHz
f = 1GHz
–40
DISTORTION (dBc)
–50
DISTORTION (dBc)
300
FREQUENCY (MHz)
Figure 18. Large Signal Pulse Response, AV = 18 dB
–100
0.5
200
–100
0.5
1.0
1.5
2.0
VOCM (V)
2.5
3.0
Figure 22. HD3 vs. VOCM, AV = 6 dB, VOUT = 0.9 V p-p,
f = 140 MHz, f = 250 MHz, f = 500 MHz, f = 750 MHz, f = 1 GHz
Figure 19. HD2 vs. VOCM, AV = 6 dB, VOUT = 0.9 V p-p,
f = 140 MHz, f = 250 MHz, f = 500 MHz, f = 750 MHz, f = 1 GHz
www.BDTIC.com/ADI
Rev. 0 | Page 10 of 20
08458-019
0
08458-042
–1.5
08458-018
–80
ADA4960-1
–50
–60
–55
–65
1GHz
–70
500MHz
DISTORTION (dBc)
250MHz
–65
–70
1GHz
–75
–80
500MHz
–85
–80
250MHz
–90
–85
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
–95
0.5
08458-043
–90
0.5
–75
1.5
VOUT (V p-p)
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
VOUT (V p-p)
Figure 23. HD3 vs. Output Amplitude @ 250 MHz, 500 MHz, 1 GHz,
AV = 6 dB, VOUT = 0.9 V p-p
08458-044
DISTORTION (dBc)
–60
Figure 25. HD2 vs. VOUT @ 250 MHz, 500 MHz, and 1 GHz,
AV = 6 dB, VOUT = 0.9 V p-p
4.0
0.096
VOUTP
3.5
VOUTP – VOUTN
0.072
VOUT (V)
VOUT (V)
3.0
2.5
0.048
1%
0.024
2.0
0.5%
0.25%
VOCM
1.5
VOUTN
–6
–4
–2
0.25%
0.5%
0
2
4
TIME (ns)
6
8
10
12
14
–0.024
08458-048
1.0
–8
0
2
4
6
8
10
12
TIME (ns)
Figure 24. Output Overdrive, VOUT vs. Time, VIN = 1 V p-p, AV =12 dB
Figure 26. Output Overdrive Recovery, VOUT vs. Time,
VIN = 1 V p-p, AV =12 dB, VOCM = 2.4 V
www.BDTIC.com/ADI
Rev. 0 | Page 11 of 20
14
08458-049
0
ADA4960-1
TEST CIRCUITS
5V
0.1µF
ETC1-1-13
BAND-PASS
FILTER
VIP
0.1µF
VOP
25Ω
RG
IIN
25Ω
50Ω
37.5Ω
VON
0.1µF
ETC1-1-13
ADA4960-1
VIN
25Ω
37.5Ω
IIP
0.1µF
SPECTRUM
ANALYZER
25Ω
08458-022
SINE WAVE
GENERATOR
Figure 27. Distortion Test Circuit
5V
0.1µF
VIP
0.1µF
RG
PULSE
SOURCE
IIN
ADA4960-1
50Ω
0Ω
VIN
25Ω
0Ω
IIP
25Ω
50Ω
VOP
VON
0.1µF
OSCILLOSCOPE
0.1µF
50Ω
08458-023
ETC1-1-13
Figure 28. Time Domain Test Circuit
5V
50Ω
0.1µF
VIP
VOP
0.1µF
IIP
50Ω
RG
IIN
50Ω
0.1µF
NETWORK
ANALYZER
50Ω
ADA4960-1
0Ω
VIN
50Ω
0Ω
VON
0.1µF
50Ω
08458-024
NETWORK
ANALYZER
Figure 29. S-Parameter Test Circuit
www.BDTIC.com/ADI
Rev. 0 | Page 12 of 20
ADA4960-1
CIRCUIT DESCRIPTION
BASIC STRUCTURE
The ADA4960-1 is a low noise, fully differential amplifier/ADC
driver that uses a single 5 V supply at 60 mA. This amplifier has
buffered inputs that isolate the gain-setting resistor (RG) from
the input signals, keeping a constant 10 kΩ differential input
impedance for all gains.
The differential output impedance is 150 Ω. The gain range is
0 dB to 18 dB and is set using a single resistor (RG).
0.1µF
RS
2
VIP
RS
2
IIP
RG
AC
IIN
The ADA4960-1 can be ac-coupled or dc-coupled at the inputs
and/or outputs within the specified input and output commonmode range.
The inputs, VIP and VIN, have a common-mode voltage range of
2.25 V to 2.75 V and are internally set at VCC/2. The outputs, VOP
and VON, have a common-mode voltage range of 1.0 V to 2.75 V
that can be set externally using the VOCM pin. The VOCM pin
is internally set to VCC/2 with no external connection.
The input of the device can be configured as single-ended or
differential with similar HD3 distortion results.
ADA4960-1
75Ω
VOP
75Ω
VON
RS
2
0.1µF
VIN
08458-025
RS
2
Figure 30. Basic Structure of the ADA4960-1
www.BDTIC.com/ADI
Rev. 0 | Page 13 of 20
ADA4960-1
APPLICATIONS INFORMATION
5V
BASIC CONNECTIONS
0.1µF
ETC1-1-13
VOP
RG
IIN
AC
R2
25Ω
ADA4960-1
VON
0.1µF
The ADA4960-1 can be configured as a differential-input-todifferential-output driver, as shown in Figure 31.
5V
0.1µF
VOP
IIP
R1
50Ω
50Ω
VIP
RG
AC
IIN
ADA4960-1
VIN
R2
50Ω
VON
0.1µF
0.1µF
0.1µF
VCC
16
2
0.1µF
RS
2
3
4
14
13
GND GND VOCM
VCC
VIP
IIP
VOP
12
0.1µF
11
ADA4960-1
IIN
VON
VIN
VCC
NC
5
NC
VCC VCC
6
7
RL
10
BALANCED
LOAD
9
0.1µF
8
0.1µF
0.1µF
VCC
10µF
NC = NO CONNECT
Figure 33. Basic Connections of the ADA4960-1
www.BDTIC.com/ADI
Rev. 0 | Page 14 of 20
08458-026
RS
2
15
PD
RG
AC
RL
2
Figure 32. Single-Ended-Input-to-Differential-Output Configuration
VCC
BALANCED
SOURCE
RL
2
08458-028
0.1µF
The differential broadband input is provided by the ETC1-1-13
balun transformer. The two 25 Ω resistors, R1 and R2, provide
the 50 Ω match to the 50 Ω ac source. The 0.1 μF capacitors,
connected in series with the inputs and outputs, isolate the source
and balanced load from the internal bias. RG is the gain-setting
resistor. Load RL should equal 100 Ω to provide the expected ac
performance (see the Specifications section). Different loads can be
applied with the gain value described by the gain adjust equation
(see the Gain Adjust section).
RS
2
0.1µF
The ADA4960-1 can also be configured as a single-ended-inputto-differential-output driver, as shown in Figure 32. R1 provides the
input source match, and R2 balances the input source impedances.
The 0.1 μF capacitors, connected in series with the inputs and
outputs, isolate the source and balanced load from the internal bias.
RG is the gain-setting resistor. RL should equal 100 Ω to provide
the expected ac performance (see the Specifications section).
INPUT AND OUTPUT INTERFACING
RS
2
RL
2
Figure 31. Differential-Input-to-Differential-Output Configuration
For normal operation, the enable pin (PD) should be tied to VCC.
When the ADA4960-1 is pulled low, it goes into power-down
mode. The VOP and VON outputs are internally biased at VCC/2
with no external source. The output common-mode range can
be adjusted in the range of 1 V to 2.75 V by applying an external
source voltage to the VCOM pin.
1
RL
2
VIN
In addition, decouple the VOCM pin and the VCI pin by using
a 0.1 μF capacitor, whether or not they are used as inputs.
0.1µF
0.1µF
IIP
R1
25Ω
50Ω
VIP
08458-030
The basic connections for operating the ADA4960-1 are shown
in Figure 33. Connect VCC to 5 V and decouple each supply pin
with a low inductance surface-mount ceramic capacitor of 0.1 μF
placed as close to the device as possible.
ADA4960-1
GAIN ADJUST
BANDWIDTH EXTENSION
The gain of the ADA4960-1 is set with a single resistor, RG,
connected across the IIP and IIN pins. Because the output
impedance is 150 Ω, the load affects the gain. The voltage
gain can be calculated for both differential and single-ended
inputs as follows:
The bandwidth of the ADA4960-1 can be extended for both
differential and single-ended input configurations by connecting
a capacitor, CS, in parallel with the gain-setting resistor, RG, as
shown in Figure 35.
5V
0.1µF
ETC1-1-13
VOP
0.1µF
RL
2
IIP
R1
25Ω
50Ω
VIP
CS
RG
AC
IIN
ADA4960-1
RL
2
VIN
where RL and RG are the load and gain-setting resistors.
R2
25Ω
VON
0.1µF
08458-027
⎛ 150 R L ⎞
⎜
⎟
⎜ 150 + R ⎟
L ⎠
⎝
AV = 4.7
(35.5 + RG )
0.1µF
18
Figure 35. ADA4960-1 with Bandwidth Extension
16
Figure 36 shows the bandwidth extension for 6 dB and 12 dB gains.
Figure 37 shows the recommended CS values for most gains (dB).
14
12
AV (V/V)
RL = 500Ω
10
14
CS = 2.2pF
RL = 200Ω
12
8
RL = 1kΩ
6
10
AV (dB)
4
RL = 100Ω
0
0
50
100
150
200
RG (Ω)
250
08458-029
2
8
CS = 0.1pF
6
4
Figure 34. AV vs. RG for RL = 100 Ω, RL = 200 Ω, RL = 500 Ω, and RL = 1 kΩ
0
10
100
1k
FREQUENCY (MHz)
RG
RL = 200 Ω
370
167
65.7
15.2
RL = 500 Ω
505
237
101
32.8
Figure 36. Bandwidth Extension for 6 dB and 12 dB Gains
RL = 1 kΩ
576
271
118
41.7
14
12
10
8
6
4
2
0
0
0.5
1.0
1.5
2.0
2.5
3.0
CS (pF)
3.5
4.0
4.5
Figure 37. Recommended CS Values for Most Gains
www.BDTIC.com/ADI
Rev. 0 | Page 15 of 20
5.0
08458-032
RL = 100 Ω
246
106
35.2
0
AV (dB)
AV (dB)
0
6
12
18
10k
08458-031
2
Table 5. AV vs. RG for RL = 100 Ω, RL = 200 Ω, RL = 500 Ω, and
RL = 1 kΩ
ADA4960-1
ADC INTERFACING
The signal source can be directly connected to the ADA4960-1
inputs as long as the source dc level is within the common-mode
input range of the ADA4960-1, as shown in Figure 40.
The ADA4960-1 is a high speed amplifier with linearity
performance to drive high speed ADCs up to 1 GHz. Several
options are available to the designer to interface with an ADC.
5V
A 100 Ω resistor across the outputs of the ADA4960-1 enhances
system bandwidth and distortion performance when the ADA4960-1
is driving an ADC with high input impedance. Lighter load
resistance improves distortion performance and lowers the
overall bandwidth.
VOP
VIP
50Ω
50Ω
RG
VREF
AC
IIN
VIN+
100Ω
IIP
ADC
ADA4960-1
VIN
VREF
VIN–
VON
25Ω
VCM
08458-050
The ADA4960-1 in Figure 38 is a differential input configuration,
using an input balun to provide the differential input signal. The
25 Ω resistors provide the input source match. The ADA4960-1
outputs can be directly connected to the ADC inputs as long as
the ADC input common mode is within the output commonmode range of the ADA4960-1. The ADC VCM output pin is
connected to the ADA4960-1 VOCM input pin to align the
ADA4960-1 output voltages with the ADC inputs.
VOCM
VREF
Figure 40. Single-Ended Input Configuration, DC-Coupled Inputs and
Outputs
When the ADC input common mode is outside the output
common-mode range of the ADA4960-1, the outputs can be
ac-coupled to provide coupling, as shown in Figure 41.
5V
5V
0.1µF
ETC1-1-13
RG
IIN
AC
VIN+
VIN
VIN–
VCM
VOCM
5V
50Ω
RG
AC
IIN
VIN
25Ω
0.1µF
VIN+
100Ω
ADC
ADA4960-1
VIN–
VON
0.1µF
VIN+
ADC
ADA4960-1
VON
VIN–
0.1µF
Figure 41. Single-Ended Input Configuration, AC-Coupled to the ADC
VCM
The user accessible gain adjust and bandwidth extension
features allow configuration of the ADA4960-1 for line driver
and channel equalization applications from dc to 6.5 Gbps.
Because of its extremely low distortion performance and high
linearity, the ADA4960-1 can be deployed in cable and backplane
channels to extend channel length and improve signaling
margin for serial links using receive equalization and transmit
pre-emphasis. The ADA4960-1 unidirectional signal path is
protocol and encoding agnostic, supporting myriad signaling
types such as NRZ and PAM2/4/8/N, coded (8b/10b), uncoded,
and out-of-band (SATA-OOB) data.
08458-034
50Ω
VOP
IIP
100Ω
LINE DRIVER APPLICATIONS
The ADA4960-1 in Figure 39 is a single-ended input configuration.
The input is matched to the source with 50 Ω resistors. The
ADA4960-1 outputs can be directly connected to the ADC inputs
as long as the ADC input common mode is within the output
common-mode range of the ADA4960-1.
VIP
IIN
0.1µF
VIN
25Ω
Figure 38. Differential Input Configuration Directly Driving the ADC
0.1µF
RG
AC
08458-033
VON
0.1µF
25Ω
ADC
ADA4960-1
VOP
IIP
50Ω
50Ω
100Ω
IIP
25Ω
50Ω
VOP
VIP
VIP
08458-035
0.1µF
VOCM
Figure 39. Single-Ended Input Configuration Directly Driving the ADC
www.BDTIC.com/ADI
Rev. 0 | Page 16 of 20
ADA4960-1
OVERDRIVE AND RECOVERY
When overdriven, the ADA4960-1 limits its outputs to 3.4 V
typical with no overshoot, as shown in Figure 42. This feature
protects the ADC from transients, eliminating the need for
additional external clamping at the inputs of the ADC.
Recovery from overdrive is 6.7 ns to 1%, 9.3 ns to 0.5%, and
12.6 ns to 0.25% of the final output voltage, see Figure 43.
0.096
VOUTP – VOUTN
0.072
4.0
VOUT (V)
VOUTP
3.5
3.0
0.048
1%
0.024
0.25%
2.5
VOCM
0
0.25%
0.5%
–0.024
0
2
4
6
8
10
TIME (ns)
1.5
VOUTN
1.0
–8
–6
–4
–2
Figure 43. Output Overdrive Recovery
0
2
4
6
8
10
12
TIME (ns)
14
Figure 42. Output Overdrive, VIN = 1 V p-p, AV =12 dB
www.BDTIC.com/ADI
Rev. 0 | Page 17 of 20
12
14
08458-052
2.0
08458-051
VOUT (V)
0.5%
ADA4960-1
LAYOUT, GROUNDING, AND BYPASSING
The ADA4960-1 is a high speed device. Realizing its superior
performance requires attention to the details of high speed
printed circuit board (PCB) design.
If the driver/receiver is more than one-eighth of the wavelength
from the amplifier, the signal trace widths should be minimal.
This nontransmission line configuration requires the underlying
and adjacent ground and low impedance planes to be cleared
near the signal lines.
The first requirement is to use a multilayer PCB with solid ground
and power planes that cover as much of the board area as possible.
The exposed thermal paddle is internally connected to the ground
pin of the amplifier. Solder the paddle to the low impedance
ground plane on the PCB to ensure the specified electrical
performance and to provide thermal relief. To reduce thermal
impedance further, it is recommended that the ground planes
on all layers under the paddle be connected together with vias.
Bypass each power supply pin directly to a nearby ground plane, as
close to the device as possible. Use 0.1 μF high frequency ceramic
chip capacitors.
Provide low frequency bulk bypassing, using 10 μF tantalum
capacitors from each supply to ground.
Stray transmission line capacitance in combination with package
parasitics can potentially form a resonant circuit at high frequencies,
resulting in excessive gain peaking or possible oscillation.
1.5mm
1.2mm
Use radio frequency transmission lines to connect the driver
and receiver to the amplifier.
1.5mm
1.2mm
Signal routing should be short and direct to avoid such parasitic
effects. Provide symmetrical layout for complementary signals
to maximize balanced performance.
0.3mm DIAMETER VIAS
08458-036
Minimize stray capacitance at the input/output pins by clearing
the underlying ground and low impedance planes near these pins.
Figure 44. Recommended PCB Thermal Attach Pad
1.5mm
1.2mm
TOP METAL
GROUND PLANE
08458-037
POWER PLANE
BOTTOM METAL
Figure 45. Cross-Section of a 4-Layer PCB Showing Thermal Via Connection to Buried Ground Plane
www.BDTIC.com/ADI
Rev. 0 | Page 18 of 20
ADA4960-1
OUTLINE DIMENSIONS
PIN 1
INDICATOR
0.30
0.25
0.20
0.50
BSC
13
PIN 1
INDICATOR
16
1
12
EXPOSED
PAD
1.65
1.50 SQ
1.45
9
TOP VIEW
0.80
0.75
0.70
0.50
0.40
0.30
4
8
0.20 MIN
BOTTOM VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
SEATING
PLANE
5
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-229.
091609-A
3.10
3.00 SQ
2.90
Figure 46. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
3 mm × 3 mm Body, Very Very Thin Quad
(CP-16-27)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADA4960-1ACPZ-R2
ADA4960-1ACPZ-RL
ADA4960-1ACPZ-R7
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
Package
Option
CP-16-27
CP-16-27
CP-16-27
Z = RoHS Compliant Part.
www.BDTIC.com/ADI
Rev. 0 | Page 19 of 20
Ordering
Quantity
250
5,000
1,500
Branding
H23
H23
H23
ADA4960-1
NOTES
©2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08458-0-4/10(0)
www.BDTIC.com/ADI
Rev. 0 | Page 20 of 20