Download Biol-1406_Ch11notes6pg.pdf

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
Transcript
Chapter 11 Outline
Chapter 11
The Continuity of Life:
Cellular Reproduction
• 1 Cellular Reproduction in the Lives of
Individual Cells and Entire Organisms
• 2 DNA Organization in Eukaryotes
• 3 Mitosis
• 4 Control of Cell Cycle
• 5 Sexual Reproduction
• 6 Meiosis
• 7 Eukaryotic Life Cycle
• 8 Genetic Variability
1 What Is the Role of Cellular Reproduction in the
Lives of Individual Cells and Entire Organisms?
– The Cell Cycle and Cellular Reproduction
– The Prokaryotic Cell Cycle Consists of Growth
and Binary Fission
– The Eukaryotic Cell Cycle Consists of Interphase
and Cell Division
– Eukaryotic Cells Grow and Replicate DNA in
Interphase
Cellular Reproduction
•
– Some activities involve ______
(enlargement) of the cell
– Some activities involve
__________ of genetic material
and cellular ________
(reproduction)
– The Process of Mitosis: Asexual Reproduction
– The Process of Meiosis: Prerequisite for Sexual
Reproduction
Cellular Reproduction
•
Reproduction from a single parent is
________ reproduction
– Some organisms reproduce asexually
Intracellular activity between
one cell division to the next
is the ______________
cell
division
cell growth and
DNA replication
Cellular Reproduction
•
Multicellular organisms ________ by asexual
reproduction; some reproduce
1
The Prokaryotic Cell Cycle
The Prokaryotic Cell Cycle
Cell cycle in ____________
1. Long ________ phase
•
Cell cycle in prokaryotes
3. Plasma membrane grows
inward ________
chromosome copies
4. Fusion of membrane along
cell equator completes
separation (________ _______
or “splitting in two”)…
of circular
DNA chromosome
Duplicate
chromosomes
_________ to membrane
____________
•
2. Cell increases in size,
pulling duplicated
chromosomes apart…
The Prokaryotic Cell Cycle
The Eukaryotic Cell Cycle
Cell cycle in prokaryotes
5. Daughter cells are genetically ________
• Progression through cell cycle in
multicellular organisms is variable
– Under ideal conditions Escherichia coli
bacteria complete a cell cycle every 20
minutes
– Cells may _____ the cell cycle and never divide
again
– Cells may enter or continue through the cell
cycle and divide in response to growth
_____________
The Eukaryotic Cell Cycle
Eukaryotic cell cycle
divided into two phases
•
_________. Eukaryotic cells
spend most time in
interphase
-
•
Acquisition of nutrients,
growth, chromosome
duplication
_______________
- One copy of every
chromosome and half of
cytoplasm and organelles
parceled out into two
daughter cells
The Eukaryotic Cell Cycle
____________ is divided
into three phases
– ___ (________ phase 1)
– Acquisition of nutrients
and growth to proper
size
– ___ (___________) phase
– DNA synthesis occurs,
replicating every
chromosome
–
___(________ phase 2)
– Completion of growth
and readying for division
2
Mitosis and Meiosis
The Eukaryotic Cell Cycle
Decision to ________ or ____
the cell cycle in ________
Internal and external signals
in G1 stimulate cells to
proceed through cycle and
divide
–
•
There are two types of cell division in
eukaryotes
– Mitotic cell division (__________)
– Meiotic cell division (__________)
Cells may _____ cycle to nondividing ____ phase
– Cells remain alive and
metabolically active in G0
– Specialization
(differentiation) occurs
» Unique features of cell
type develop
Mitosis and Meiosis
•
Mitosis and Meiosis
Mitosis is the mechanism of asexual
reproduction in eukaryotic cells
• ________ division occurs in animal
________ and ________
– Two divisional steps produce _____
daughter cells that can become
– Used in the ____________ of _________ organisms
– Used in ________ of fertilized egg into adult
– Used in cloning and stem cell research
•
________
– Daughter cells are genetically
________ from parent cell and each
other
– Daughter cells have ____ the genetic
material of the parent cell
Mitotic cell division involves two steps
–
_______________ division
–
___________________(cytoplasmic separation)
mitosis,
differentiation,
and growth
embryo
mitosis,
baby differentiation, and growth
adults
meiosis in
ovaries
egg
fertilized
egg
meiosis in
testes
sperm
fertilization
The Eukaryotic Chromosome
•
•
DNA must be ________
(coiled) to fit into nucleus
for easy manipulation in
cell division
Each chromosome consists
of a _____ double helix
wound around spool
________
The Eukaryotic Chromosome
•
A chromosome contains
hundreds of DNA
sequences called ________
found at specific locations
(_______)
• Each chromosome contains
– A central ________
–
________
3
The Eukaryotic Chromosome
Centromere (“middle body”) is region where
chromosome can ___________________
________________
•
– Two sister chromatids bound at their
centromeres comprise a __________________
chromosome
– Sister chromatids separate at their centromeres
during mitosis
The Eukaryotic Chromosome
•
Homologous Pairs of Chromosomes
Telomeres (“____ bodies”) are the two
ends of a chromosome
•
Duplicated chromosomes are tightly coiled
“___” shapes
– Essential in maintaining chromosome ________
Homologous Pairs of Chromosomes
Chart showing entire
set of stained
chromosomes
(__________) shows
pairs
– Every chromosome in a
non-reproductive cell
has a “partner” or
______________
chromosome
– Homologues contain
the
of
Homologous Pairs of Chromosomes
Human cells have ____
homologous _______ of
chromosomes
–
Chromosome pairs 1-22 are
_______________ with similar
appearance between homologues
Chromosome pair 23 are _____
chromosomes which may have
similar or different appearances
–
–
Females have _____ chromosomes
of similar appearance
Males have an ___ and a ___
chromosome (the Y is much
smaller)
4
Homologous Pairs of Chromosomes
•
•
Homologous Pairs of Chromosomes
A karyotype showing two chromosomes for
each pair comes from a ________(meaning
“double”) cell
Cells with only one chromosome “per pair”
are ________(containing half the diploid
number)
–
•
________(in sexual reproduction) _____________
________ cells from one diploid cell
Mitosis Consists of Four Phases
•
Diploid and haploid numbers
– Number of haploid chromosomes in a cell
designated “____”
– Number of diploid chromosomes in a cell
designated “____”
Mitosis Consists of Four Phases
Cells prepare for
mitotic division
during ____________
•
– Chromosomes are
______________ in S
phase
– Necessary ________
are synthesized in
G1 and G2
Four phases of mitosis
– __________
– __________
– __________
– __________
Mitosis
• _____________
– Nuclear Envelope
________.
– Chromosomes
Mitosis
• Metaphase
– Chromosomes align in
cell’s center (equator).
pole
• _________________
________
– Nucleolus ___________
– _____________________
assembles
– Microtubules connect
_____________ on each
pair of sister
chromatids to the
________________.
kinetochore
pole
5
Mitosis
• Anaphase
Mitosis
• ________
– Spindle _______________
– Nuclear envelope _____
around each set of
daughter chromosomes.
– ________ reappear
"free" spindle
fibers
– Spindle microtubules
________________ daughter
chromosomes (formerly
sister chromatids) towards
each spindle pole
– Pole-pole microtubules
push cell ________________
chromosomes
extending
nuclear envelope
re-forming
TELOPHASE
ANAPHASE
One set of chromosomes
reaches each pole and relaxes
into extended state; nuclear
envelopes start to form
around each set; spindle
microtubules begin to
disappear.
_____________
• __________ of cell into
two ________.
INTERPHASE
MITOSIS
nuclear
envelope
chromatin
• Animal Cells:
– Actin filaments form a
“___” around the cell’s
equator.
– The belt contracts,
pinching in the cell’s
“waist”, forming two
__________________.
beginning of
spindle formation pole
centriole
pairs
INTERPHASE OF
DAUGHTER CELLS
CYTOKINESIS
Cell divides in two; each
daughter cell receives one
nucleus and about half of
the cytoplasm.
Spindles disappear, intact
nuclear envelopes form,
chromosomes extend
completely, and the
nucleolus reappears.
LATE INTERPHASE
Duplicated chromosomes in
relaxed state; duplicated
centrioles remain clustered.
pole
condensing
chromosomes
nucleolus
EARLY PROPHASE
Chromosomes condense
and shorten; spindle
microtubules begin to form
between separating
centriole pairs.
spindle
microtubules
kinetochore
LATE PROPHASE
Nucleolus disappears;
nuclear envelope breaks
down; spindle microtubules
attach to the kinetochore
of each sister chromatid.
METAPHASE
Kinetochores interact;
spindle microtubules line up
chromosomes at cell's
equator.
Cytokinesis
• Plant Cells: Cell ________
INTERPHASE
"free" spindle
fibers
chromosomes
extending
ANAPHASE
Sister chromatids separate
and move to opposite poles
of the cell; spindle
microtubules push poles
apart.
Golgi complex
nuclear envelope
re-forming
TELOPHASE
One set of chromosomes
reaches each pole and relaxes
into extended state; nuclear
envelopes start to form
around each set; spindle
microtubules begin to
disappear.
CYTOKINESIS
Cell divides in two; each
daughter cell receives one
nucleus and about half of
the cytoplasm.
cell wall
plasma
membrane
carbohydratefilled vesicles
INTERPHASE OF
DAUGHTER CELLS
Spindles disappear, intact
nuclear envelopes form,
chromosomes extend
completely, and the
nucleolus reappears.
Carbohydratefilled vesicles
bud off the______
and move to the
equator of the
cell.
________ ________to
form a new cell
wall and plasma
membrane
between daughter
cells.
Complete
separation of
daughter cells.
6
Mitosis in Onion Roots
• Interphase
early Prophase
late Prophase
• Metaphase
Anaphase
late Anaphase
• Telophase
Daughter cells
Control of Cell Cycle
•
The cells of _____ tissues _____ frequently
throughout lifespan
• e.g. skin, intestine
•
•
Cell division occurs rarely or ________ in
________ tissues
• e.g. brain, heart, skeletal muscles
Enzymes Drive the Cell Cycle
– The cell cycle is driven by proteins called ______
__________ ______________, or ________
– Kinases are enzymes that ______________(add a
phosphate group to) other proteins, stimulating or
inhibiting their ________
– Cdk’s are active only when they bind to other
proteins called ________
Cell division in eukaryotes is driven by
________ and controlled at specific
checkpoints
Enzymes Drive the Cell Cycle
• Cell division occurs when ________
___________ bind to cell surface _____________,
which leads to cyclin synthesis
• Cyclins then bind to and activate specific
________
Enzymes Drive the Cell Cycle
•
Activated Cdk’s promote a variety of cell
cycle events
– Synthesis and activation of _____________
required for DNA synthesis
– Chromosome _________________
– Nuclear _______________________ breakdown
–
________________ formation
–
_________________ of chromosomes to spindle
– Sister chromatid __________________ and movement
7
Checkpoints Control Cell Cycle
• Although Cdk’s drive the cell cycle,
multiple checkpoints ensure that
– The cell _______________ completes _____
_______________ during interphase
– Proper chromosome _______________ occur
during mitotic cell division
Checkpoints Control Cell Cycle
•
There are three
major
checkpoints in
the eukaryotic cell
cycle, each
regulated by
protein
complexes
–
–
_________ :
_______________
–
____________
to
anaphase
Checkpoints Control Cell Cycle
•
G1 to S: Ensures that
the cell’s DNA is
suitable for replication
– ___ protein expressed
when DNA is ________
• ________ replication
• Stimulates synthesis
of DNA ________
enzymes
• Triggers cell death
(__________) if damage
can’t be repaired
Checkpoints Control Cell Cycle
•
G2 to mitosis: Ensures that
DNA has been completely
and accurately replicated
– p53 protein expression leads
to decrease in synthesis and
activity of an enzyme that
facilitates __________________
_______________
– chromosomes remain
extended and _____________ to
DNA repair enzymes, which fix
DNA before cell enters mitosis
Checkpoints Control Cell Cycle
• Metaphase to
anaphase: Ensures
that the chromosomes
are ________ properly at
the metaphase plate
– a variety of proteins
_____________________ of
the sister chromatids if
there are defects in
chromosome alignment
or spindle function
8
Why do So Many Organisms
Reproduce Sexually?
gene 1
• ________
– Sexual reproduction involves production of _______
________ through meiosis.
• ________
– A gene might have alternate forms (________).
Sexual reproduction allows _________________
__________________.
meiosis in
ovaries
egg
fertilized
egg
gene 2
_____ alleles
________ __
alleles
adults
meiosis in
testes
Copyright © McGraw-Hill Companies Permission required for reproduction or display
fertilization
sperm
How Does Meiotic Cell Division
Produce Haploid Cells?
• There are two cell divisions during Meiosis;
Meiosis I and II.
• Meiosis I Separates _______________
Chromosomes into Two Haploid Daughter
Nuclei
• The total number of cells produced is __
Meiosis I
2n
meiotic
cell division
2n
fertilization
Meiotic Cell Division Followed by Fusion of Gametes
Keeps the Chromosome Number Constant
from Generation to Generation
Meiosis II
MEIOSIS I
Unique Features of Meiosis (3)
• ________
– Homologues pair along their length.
• ________ Recombination
– Crossing over occurs between homologous
chromosomes.
• ________ Division
– 2 Cell divisions: Chromosomes do not
replicate between Meiosis I and II.
______________
• Duplicated chromosomes
condense.
• __________ chromosomes
____up and __________
occur as chromatids of
homologues exchange
parts.
• The nuclear envelope
disintegrates, and spindle
microtubules form
paired homologous
chromosomes
spindle
microtubule
chiasma
9
Crossing Over
_________________
• Presence of chiasmata [_______] indicates
_______________ has occurred.
• Terminal chiasmata holds
homologous pair together.
• ________ microtubules attach to
________ __proteins only on the
________ of each centromere.
• Metaphase plate: Each _______
_____ of homologues ________.
– Orientation of each pair is________
• Mendel’s “independent assortment” is
explained
Completing Meiosis
Completing Meiosis
• ______________
• _____________
– Chromosomes segregated into
two clusters at opposite ends
of cell
– Spindle fibers begin to shorten
and pull whole centromeres
towards poles.
• Each pole receives a ___________
___________________
• Nuclear membrane ________.
– __________________________
____________
MEIOSIS I
Second Meiotic Division
paired homologous
chromosomes
recombined
chromosomes
• Meiosis II _____________
normal ________ division but
with few chromosomes
spindle
microtubule
chiasma
Prophase I. Duplicated
chromosomes condense.
Homologous chromosomes
pair up and chiasmata occur
as chromatids of homologues
exchange parts. The nuclear
envelope disintegrates, and
spindle microtubules form.
Metaphase I. Paired
homologous chromosomes
line up along the equator of
the cell. One homologue of
each pair faces each pole
of the cell and attaches to
spindle microtubules via its
kinetochore (blue).
Anaphase I. Homologues
separate, one member of
each pair going to each pole
of the cell. Sister chromatids
do not separate.
Telophase I. Spindle
microtubules disappear. Two
clusters of chromosomes have
formed, each containing one
member of each pair of
homologues. The daughter nuclei
are therefore haploid. Cytokinesis
commonly occurs at this stage.
There is little or no interphase
between meiosis I and meiosis II.
– Prophase II - Nuclear envelope
breaks down.
– Metaphase II - Spindle fibers
bind to both sides of ________
– Anaphase II - Spindle fibers
contract and sister
_____________move to
opposite poles
10
Second Meiotic Division
Second Meiotic Division
– Cytokinesis results in:
• _ ________ ________ ________
_______
MEIOSIS II
The mechanism of crossing over
sister
chromatids of
one duplicated
homologue
protein strands
joining duplicated
chromosomes
direction of
“zipper”
formation
pair of homologous,
duplicated chromosomes
Duplicated homologous
chromosomes pair up side
by side.
Prophase II.
If chromosomes
have relaxed after
telophase I, they
recondense. Spindle
microtubules re-form
and attach to the
sister chromatids.
Metaphase II.
Chromosomes line
up along the equator,
with sister chromatids
of each chromosome
attached to spindle
microtubules that lead
to opposite poles.
Anaphase II.
Chromatids separate
into independent
daughter chromosomes,
one former chromatid
moving toward each
pole.
Telophase II.
Chromosomes finish
moving to opposite
poles. Nuclear
envelopes re-form,
and the chromosomes
become extended
again (not shown here).
Protein strands “zip” the
homologous chromosomes
together.
recombinatio
n
enzymes
Recombination
enzymes bind to the
joined chromosomes.
Four haploid
cells.
Cytokinesis results in
four haploid cells, each
containing one
member of each pair
of homologous
chromosomes (shown
here in condensed
state).
duplicated
chromosomes
chiasma
Recombination
enzymes snip
chromatids apart
and reattach the free
ends.
Chiasmata (the sites
of crossing over)
form when
one end of the
paternal chromatid
(yellow) attaches to
the other end
of a maternal
chromatid
(purple).
chiasma
Recombination enzymes
and protein zippers leave.
Chiasmata remain, helping
to hold homologous
chromosomes together.
spindle
microtubules
11
Sexual Reproduction Produces Genetic
Variability in Three Ways :
• Shuffling of
Homologues Creates
Novel Combinations
of _______________
• Crossing Over
Creates
Chromosomes with
Novel Combinations
of ________
• Fusion of ________
Adds Further Genetic
Variability to the
Offspring
Evolutionary Consequences of Sex
• Evolutionary process is revolutionary and
conservative.
•
In Haploid
Life Cycles,
the Majority
of the
Cycle
Consists of
Most of life cycle is haploid
Asexual reproduction by mitotic cell
division produces a population of ________,
haploid cells
sper
m
•
In Diploid Life •
Cycles, the
Majority of the
Cycle Consists
of _____ Cells
In Alternation-ofGeneration Life
Cycles, There Are
____ Diploid and
Haploid Multicellular
Stages
Cells
Haploid Life Cycles
•
•
fertilization
________
• May act to ________ existing gene combinations
________ and unicellular ________
fertilized
egg
________ ________
– Pace of evolutionary change is accelerated by
genetic recombination
– Evolutionary change not always favored by
selection
•
meiosis in
ovaries
egg
Haploid Life Cycles
•
•
Under certain
environmental
conditions, “_____”
haploid cells are
produced
Two sexual haploid
cells fuse, forming a
diploid cell that
________
undergoes meiosis,
producing haploid
cells again
12
Diploid Life Cycles
•
•
Most ________
Most of the cycle is
in diploid state
Haploid gametes
are formed by
________
Gametes fuse to
form a diploid
________
Zygote develops
into adult through
_____ cell divisions
•
•
•
Alternation-of-Generation Cycles
•
•
•
•
________
Includes both
multicellular diploid and
multicellular haploid body
forms
Multicellular diploid body
gives rise to ________
________ ________
Spores undergo mitosis
to produce a ________
__ ________ ______
The making of Dolly
Alternation-of-Generation Cycles
•
•
•
donor cell
from udder
Eventually, certain
haploid cells
differentiate into
________________
Two gametes fuse to
form a _____________
The zygote grows by
mitotic cell division into
a diploid ___________
__________________
The cell divides, forming an
The ball of cells is implanted
embryo that consists of a hollow ball into the uterus of another
of cells.
Blackface ewe.
Finn Dorset ewe
electric pulse fused cells
Cells from the udder of a Finn Dorset ewe
are grown in culture with low nutrient levels.
The starved cells stop dividing and enter the
non-dividing G0 phase of the cell cycle.
Blackface ewe
egg
cell
nucleus is
removed
DNA
Meanwhile, the nucleus is
sucked out of an unfertilized egg
cell taken from a Scottish Blackface
ewe. This egg will provide cytoplasm
and organelles but no chromosomes.
The egg cell without a
nucleus and the quiescent
udder cell are placed side by
side in a culture dish. An
electric pulse stimulates the
cells to fuse and initiates mitotic
cell division.
The Blackface ewe gives
birth to Dolly, a female Finn
Dorset lamb, a genetic twin
of the Finn Dorset ewe.
13