Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 9 – Electro-Optics Gabriel Popescu University of Illinois at Urbana‐Champaign y p g Beckman Institute Quantitative Light Imaging Laboratory Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical and Computer Engineering, UIUC ECE 460 – Optical Imaging Electro‐Optics Electro Optics 1st order effect: Pi w 1 0 DC ii jj rijk E j ( ) Ek (0) 11Oz Di 0 ni Ei 0 ni n j rijk E j Ek ( DC ) 2 2 2 Dx 0 n02 0 n04 r12 3 E y E Dc 0 n02 ne r13 3 E z E DC 6 Dy 0 n02 0 n04 r213 E x E Dc 0 4 Dz 0 ne 2 E z Chapter 9: Electro‐Optics 5 r53 0 kDP 2 '1 226 ELECTRO-OPTICS By using the contracted indices (7.1-11), the equation of the index ellipsoid in the presence of an electric field can be written (:~ + rlkEk ) x 2 + (:; + r2kEk) y2 + (:; + r3kEk) Z2 (7.2-3) +2yzr4k E k + 2zxr5kEk I I I Table 7.2. Electro-optic: Coefficients in Contracted Notation for All Crystal Symmetry Oasses Q Centrosymmetric (I, 2/m, mmm, 4/m, 4/mmm, 3, 3m 6/m,6/mmm, m3, m3m): 000 000 000 000 000 I + 2xyr6kEk = 0 000 where Ek (k = 1,2,3) is a component of the applied electric field and summation over repeated indices k is assumed. Here 1,2,3 correspond to the principal dielectric axes x, y, z, and nx ' ny, nz are the principal refractive indices. This new ellipsoid (7.2-3) reduces to the unperturbed ellipsoid (7.1-1) when Ek = O. In general, the principal axes of the ellipsoid (7.2-3) do not coincide with the unperturbed axes (x, y, z). A new set of principal axes can always be found by a coordinate rotation, which is known as the principal-axis transformation of a quadratic form. The dimensions and orientation of the ellipsoid (7.2-3) are, of course, dependent on the direction of the applied field as well as the 18 matrix elements rlk. We have argued above that in crystals possessing an inversion symmetry (centrosymmetric), rlk = O. The form, but not the magnitude, of the tensor r1k Can be derived from symmetry considerations, which dictate which of the 18 coefficients r1k are zero, as well as the relationships that exist between the remaining coefficients. In Table 7.2 we give the form of the electro-optic tensor for all the noncentrosymmetric crystal classes. The electro-optic coefficients of some crystals are listed in Table 7.3. Triclinic: rij = 0 0 0 0 0 r63 '13 '23 '31 '32 '33 '41 '42 '43 '51 '52 '53 '61 '62 '63 2 (2 II X2) 0 0 0 2 (2" X3) 0 0 '13 0 0 '23 0 0 0 0 0 '41 0 '43 '41 '42 0 '52 0 '51 '52 0 0 '61 0 '63 0 0 '63 '12 '22 '32- m (m J. X2) Consider the specific example of a crystal of potassium dihydrogen phosphate (KH 2 P04 ), also known as KDP. The crystal has a fourfold axis of symmetry, which by strict convention is taken as the z (optic) axis, as well as two mutually orthogonal twofold axes of symmetry that lie in the plane normal to z. These are designated as the x and y axes. The symmetry group of this crystal is 42m. Using Table 7.2, we write the electro-optic tensor in the form 0 0 0 0 r41 0 '12 '22 Monoclinic: 7.2.1. Example: 1be Electro-optic Effect in KH 1 P04 0 0 0 r41 0 0 'Il '21 '33 m (m J. X3) '21 0 0 '23 '21 '22 '31 0 '33 '31 0 '42 0 0 '32 0 '43 '51 0 '53 0 0 '53 0 '62 0 '61 '62 0 0 0 0 222 0 0 0 0 0 '41 0 0 'Il '13 'II 0 '12 0 0 Orthorhombic: (7.2-4) 0 0 '52 0 2mm 0 0 0 0 0 0 '51 '63 0 0 0 0 '42 0 0 '\3 '23 '33 0 0 0 227 "r THE LINEAR ELECTRO-OPTIC EFFECT 229 Table 7.2. ( Continued). Table 7.1- ( Continued). Hexagonal: Tetragonal: '13 0 4 0 0 '13 0 0 0 '33 0 0 4 0 0 0 0 '41 '51 '51 -'41 0 0 0 0 0 '41 -'51 0 0 '51 '41 0 0 4mm 0 0 0 0 0 0 0 '51 0 0 '51 0 '13 -'13 0 '\3 '33 0 0 0 '63 (211 0 -'41 0 6 0 0 0 0 0 0 0 0 0 '13 '41 '51 0 '51 -'41 0 0 0 0 0 0 0 '51 '51 0 0 0 '33 0 0 '11 -'22 '22 0 0 0 0 0 0 0 0 0 0 -'II 0 0 0 0 0 0 '41 0 '63 -'22 '13 0 -'22 -'22 '22 622 0 0 0 0 0 0 0 '\3 '33 '41 0 0 0 0 0 6m2 (m .L XI) -'11 0 0 0 0 0 0 0 0 '41 0 '\3 6 XI) 0 0 6mm 0 0 0 0 0 0 0 0 0 0 0 0 '41 0 0 42m '\3 0 0 0 422 0 0 0 0 0 0 0 -'41 0 0 0 6m2 (m.l X2) 'II 0 0 0 0 0 0 -'11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -'11 0 Cubic: Trigonal: 32 3 -'22 '22 0 '33 0 '41 '51 0 '41 0 0 0 0 '51 -'41 0 0 -'41 -'22 -'II 0 0 -'11 'II -'II 0 3m 0 0 0 0 '51 -'22 (m .1 '13 '11 '\3 -'11 XI) 3m (m .1 X2) 0 0 0 -'22 '13 '11 '22 '13 -'II '33 0 0 '51 '51 0 0 -'11 0 '51 0 0 0 0 0 0 0 0 0 0 0 '13 '13 '33 0 0 0 0 0 0 '41 0 0 43m,23 0 0 0 0 0 '41 0 0 0 0 0 '41 0 0 0 0 0 0 432 0 0 0 0 0 0 0 0 0 0 0 0 °The symbol over each matrix is the conventional symmetry-group designation. so that the only nonvanishing elements are '41 = '52 and '63' Using Eqs. (7.2-3) and (7.2-4), we obtain the equation of the index ellipsoid in the presence of a field E(Ex' Ey ' Ez ) as where the constants involved in the first three terms do not depend on the field and, since the crystal is uniaxial, are taken as nx = ny = no' n z = ne' We thus find that the application of an electric field causes the appearance of "mixed" terms in the equation of the index ellipsoid. These are the terms with xv. xz. vz. This means that the major axes of the ellipsoid, with a field 228 ECE 460 – Optical Imaging Electro‐Optics Electro Optics n02 n04 r63 EDc 0 4 2 ij 0 n0 r63 E Dc n0 0 2 0 0 n e ij ' W ( ) W ( ) 2 cos sin n0 cos 2 sin cos n0 sin sin cos b i n0 2 0 0 2 ij 0 0 n0 0 ; n0 4 r63 Ez ( DC ) 4 2 0 0 n e biaxial crystal Chapter 9: Electro‐Optics 3 ECE 460 – Optical Imaging Modulators Eg (tetra ) g KDP( y 42m ) r41 , r52 , r63 only three nonzero elements n x 2 n0 2 ; 1 1 nx n0 n0 1 2 n0 n0 2 n0 n0 2 n0 2 n0 1 3 n0 n0 r63 Ez ( DC ) 2 1 n y n0 2 r01 2 Chapter 9: Electro‐Optics 4 ECE 460 – Optical Imaging Modulators 2 2 3 (nx n y ')d n0 r63 Ez ( DC )d n0 0 V V T ssin 2 2 Chapter 9: Electro‐Optics 0 2n03r63 Add linearize V QW T sin 4 2 V 2 5 ECE 460 – Optical Imaging Modulators Let V Vm sin mt T sin m sin mt 4 2 2 1 1 1 cos m sin mt 1 sin m sin mt 2 2 2 linear m 1 T Chapter 9: Electro‐Optics 1 1 m sin mt m 2 6 ECE 460 – Optical Imaging Quadratic (Kerr) Quadratic (Kerr) Pi ( ) Chapter 9: Electro‐Optics 1 0 ii jj sijk E j ( ) Ek ( DC ) Ee ( DC ) 7 ECE 460 – Optical Imaging Applications of EO Applications of EO longitudinal g transverse For LiNiO3 : 2 0 n0 L 0 Chapter 9: Electro‐Optics modulators 1 3 nx n0 n0 r13 E 2 1 n y n0 n03r13 E 2 1 nz ne ne3r33 E 2 3 n0 r13V v Ed V v 3 n0 r13 Phase mod(indep. of polariz.) 8 Chapter 9 – Acousto-optics Gabriel Popescu University of Illinois at Urbana‐Champaign y p g Beckman Institute Quantitative Light Imaging Laboratory Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical Imaging Electrical and Computer Engineering, UIUC ECE 460 – Optical Imaging Acousto‐optics Acousto optics Pi 0 n j ni pijkl Skl E j 2 2 jkl 12 6 13 5 23 4 x • ac wave: z S13 S5 cos(t kz ) U ( z , t ) xA Chapter 9: Acousto‐optics 10 Chapter 1: Introduction 11 Acousto‐optics Acousto optics k2 K k1 K k2 k1 2nk0 sin K k0 2 / K 2 / sin B ; Bragg angle ECE 460 – Optical Imaging Acousto‐optics Acousto optics small ll ( k k0 0 ) Δk Δv Doppler Shift Kvs Quantum mechanics Chapter 9: Acousto‐optics k' k ' conservation of momentum conservation of energy 13 ECE 460 – Optical Imaging Anisotropic media Anisotropic media k ' k k' ' n-different - negative k k 'sin ' k sin ; ' 2 n ' 2 2 sin ' sin ; 0 0 n 0 wavelength of sound sin ' sin n ' n ' Chapter 9: Acousto‐optics 2 n 14 ECE 460 – Optical Imaging Anisotropic Ex: C k ' k - (e) k ' - scattered in prop. Plane – (o) k ' (o) 0 ne sin ' sin n ' n0 0 0 ' n0 ne 2 2 ' , 0 2 Chapter 9: Acousto‐optics 2 n0 ne 0 n0 ne 0 n0 ne 15 ECE 460 – Optical Imaging Small angle Scattering Small angle Scattering I scatt sin 2 ( L ) I inc k0 ( n1n2 )3/2 ei p ijke S ke e j 4 cos1 cos 2 vs Kin. Energy/ V = ½ Wtotal 2 1 2 2 1 3 vs | u | vs [ | U |] 2 2 U S U 2 1 I ac vs 3 S z 2 1 I ac vs 2 Chapter 9: Acousto‐optics U t 2 16 ECE 460 – Optical Imaging Small angle Scattering Small angle Scattering S 2II ac 2 k0 ( n1n2 )3/2 2 I ac P 3 vs vs 3 4 cos1 cos 2 6 Small cos 1 2 n p M vs 3 p table k0 (n1n2 )3/2 4 Chapter 9: Acousto‐optics vs 3 M 2 I ac 6 3 n vs MI ac 20 17 ECE 460 – Optical Imaging Small angle Scattering Small angle Scattering Detuning: g sin B 2k sin 2 sin 1 k1 sin 1 k2 sin 2 k ; 2 B ( Bragg ) 2k sin ( ) k1 cos11 k2 cos 2 2 1 2 ( ) k ((cos1 cos 2 ) 2k sin B 2 2 I scat 2 1 2 2 2 sin L 1 ; s 2 2 I inc 2 1 2 2 Chapter 9: Acousto‐optics 18 ECE 460 – Optical Imaging Finite Beams Finite Beams A’ B’ B 2 ; nw0 L size of acoustic beam ; 1 ; 2 2L f s f 2nvs cos 20 4vs cos 1 - Full vs 0 nw0 w0 2 1 ; or ( ) f 2nvs cos W0 0 L ! Not overlap with undiffracted order Chapter 9: Acousto‐optics 19 ECE 460 – Optical Imaging N spots N spots N B nW0 W0 f N 2nvs cos 20 2vs 2nvs 0 f f ; cond B 2 0 0 f 2 n f L 2nvs f0 0 L Chapter 9: Acousto‐optics 20