Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Bidang Ilmu: FISIKA MEDIS LAPORAN PENELITIAN HIBAH BERSAING TAHUN ANGGARAN 2011 Penentuan Dose Reference Level (DRL) pada Prosedur Diagnosis Kepala Menggunakan CT-scan sebagai Upaya Proteksi Radiasi kepada Pasien secara Nasional Drs. Johan Andoyo Effendi Noor, M.Sc., Ph.D. dr. Indrastuti Normahayu, Sp.R. Dibiayai oleh Direktorat Jenderal Pendidian Tinggi, Kementerian Pendidikan Nasional, melalui DIPA Universitas Brawijaya REV.1 Nomor: 0636/023-04.2.16/15/2011 R, tanggal 30 Maret 2011 dan berdasarkan surat dari DP2M Dikti Nomor: 121/D3/PL/2011 tanggal 7 Februari 2011 UNIVERSITAS BRAWIJAYA NOPEMBER 2011 RINGKASAN Salah satu aspek penting yang sangat diperlukan oleh seorang dokter, khususnya dokter spesialis penyakit dalam, dalam melakukan diagnosis suatu penyakit adalah keberadaan dari citra organ-organ dalam tubuh yang sedang didiagnosis. Dengan bantuan citra bagian dalam tubuh tersebut seorang dokter dapat melakukan diagnosis dengan lebih cermat, sehingga terhindar dari kemungkinan salah diagnosis. Sejarah pencitraan medis berawal dari ditemukannya sinar-x oleh Wilhelm Conrad Röntgen pada tahun 1895. Citra sinar-x pertama atas organ tubuh manusia adalah foto sinar-x tangan istrinya. Oleh sebab itu sampai saat ini foto-foto yang dibuat dengan menggunakan modalitas sinar-x sering juga disebut dengan foto Röntgen. Kemudian seiring dengan kemajuan di bidang komputasi, baik dalam bidang perangkat keras maupun perankat lunaknya, teknik pencitraan dengan sinar-x telah mengalami kemajuan dengan munculnya teknik Computerised Tomography, yang dikenal dengan CT-scan, yang pertama kali diperkenalkan oleh Sir Godfrey Hounsfield (Hounsfield, 1973) pada tahun 70-an. Sinar-x merupakan sepenggal spektrum gelombang elektromagnetik yang terletak di ujung energi tinggi spektrum gelombang elektromagnetik di bawah dan bersingungan dengan sinar gamma. Sinar-x mempunyai kemampuan yang sama dengan sinar gamma dalam mengionkan benda-benda yang dilaluinya, sehingga keduanya juga dikenal sebagai sinar pengion. Jika proses ionisasi ini terjadi pada jaringan lunak organ maupun cairan di dalam tubuh manusia, maka bisa mengakibatkan terjadinya kerusakan sel, mutasi gen, terbentuknya radikal bebas, dan sel-sel kanker. Proteksi radiasi di dalam praktik pencitraan diagnostik dimaksudkan untuk menjamin bahwa keuntungan penggunaan sumber radiasi lebih besar dari risikonya terhadap individu yang terlibat. Optimasi proteksi dan keselamatan dilakukan dengan prinsip “As Low As Reasonably Achievable.” Penggunaan berkas pengion sinar-x di dalam praktek pencitraan diagnostik telah mengalami kemajuan yang sangat pesat, baik dari sisi teknik pengambilan data, kualitas citra yang dihasilkan maupun jumlah tindakan. Dalam aplikasi radiasi, dosis efektif merupakan parameter yang digunakan untuk menyatakan dan membandingkan dosis radiasi yang diberikan kepada pasien. The International Commission on Radiological Protection (ICRP) telah mengeluarkan rekomendasi dosis efektif yang aman bagi manusia yang bisa digunakan sebagai standar acuan. Sehingga Pemerintah Republik Indonesia sangat perlu mempunyai standar nasionalnya yang mengacu kepada standar internasional ini. Penelitian pada tahun pertama ini dilakukan dengan mengukur, menghitung dan menganalisis dosis efektif pencitraan sinar-x pada mesin CT-scan di Instalasi Radiologi di tiga rumah sakit besar di kota Malang, yaitu Rumah Sakit Saiful Anwar (RSSA), Rumah Sakit Tentara Soepraoen (RST), dan Rumah Sakit Panti Nirmala (RSPN), yang diambil sebagai rumah sakit peserta. Pengukuran dosis dilakukan pada pasien yang menjalani eksaminasi kepala di rumah sakit peserta. Parameter-parameter CT yang diambil antara lain: tegangan tabung (dalam kVp), arus tabung (dalam mA), waktu pemindaian (dalam detik), panjang pindai (scan length dalam cm), lebar kolimator (dalam mm), CTDIvol (dalam mGy), dan Dose Length Product (DLP dalam mGy.cm). Dari data-data tersebut kemudian dihitung besar dosis efektif yang diterima oleh pasien dengan menggunakan program komputer perhitungan CTDosimetry versi 1.0.4 (dengan program Microsoft Excel) yang dibuat oleh ImpACTscan Inggris. Hasil-hasil yang telah diperoleh memperlihatkan bahwa mesin CT scan di RSSA (buatan General Electric Healthcare Inc. dengan tipe HiSpeed DX/i) memberikan dosis efektif rata-rata sebesar 1,31 mSv untuk pasien laki-laki dan 1,19 mSv untuk pasien prempuan, mesin di RST (buatan Siemens Healthcare System dengan tipe Somatom Spirit) memberikan dosis efektif ratarata sebesar 1,38 mSv untuk pasien laki-laki dan 1,32 mSv untuk pasien prempuan, dan mesin di RSPN (buatan Siemens Healthcare System dengan tipe Emotion6) memberikan dosis efektif rata-rata sebesar 2,06 mSv untuk pasien laki-laki dan 1,93 mSv untuk pasien prempuan. Tampak dari hasil-hasil tersebut mesin Siemens Emotion6 memberikan dosis paling tinggi dan mesin CT GE HiSpeed DX/i memberikan dosis efektif paling kecil. Secara umum, mesin yang menerapkan pencatuan arus adaptif (GE) memberikan dosis yang lebih kecil dibandingkan dengan mesin yang arusnya dicatu secara tetap/konstan (Siemens). SUMMARY One important tool required by a medical doctor, especially an internist, in conducting a clinical diagnose is internal images of the body under investigation. The images will help the doctor in diagnosing his/her patients more accurately to avoid any misdiagnose. The history of medical imaging started after the discovery of x-ray by Wilhelm Conrad Röntgen in 1895. The first x-ray image of human body ever made was the image of the hand of Mrs. Röntgen. The photography that utilizes x-ray beam to produce images is called a Röntgen photography. In the wake of and advances in computing technology, both in hardware and software aspects, the x-ray imaging technology follows by the invention of the Computerized Tomography, also known as CT-scan, by Sir Godfrey Hounsfield (Hounsfield, 1973) in early 70‘s. X-rays lie in the high energy end of the electromagnetic spectrum just below and overlap with the gamma-rays. Therefore, x-ray has the similar capability to gamma-ray in ionizing matters they are passing through. This capability makes them be called ionizingrays. If the ionization occurs in soft tissues of the organs or to the electrolites in the body, cell damage, gen mutation, free radical formation, dan cancer cells production may result in. Radiation protection in diagnostic imaging practices is aimed to ensure that the benefits of the use of ionizing radiation exceed the risk resulted in to the individuals involved. Protection and safety optimization is conducted using a principle of ALARA (As Low As Reasonably Achievable). The employment of ionizing x-ray beam in the diagnostic imaging practices has been advancing very rapidly in the aspects of image acquisition technique, image quality, and the number of procedures carried out. In the application of radiation, the effective dose is a parameter used to express and compare the radiation doses received by patients. The International Commission on Radiological Protection (ICRP) has published its recommendation on the effective dose safe to humans that can be used as the reference standard. In the sake of public protection, the Government of the Republic of Indonesia must establish a national standard by adopting the ICRP standards. The research in the first year was carried out by measuring, calculating, and analyzing the effective doses from examinations using CT-scanners at the Department of Radiology of three main hospitals in Malang: Rumah Sakit Saiful Anwar (RSSA), Rumah Sakit Tentara Soepraoen (RST), and Rumah Sakit Panti Nirmala (RSPN), that were taken as the participant hospitals. The dose estimations was conducted from patients sent to the departments for head examinations. The CT parameters taken were: tube voltage (in kVp), tube current (in mA), scan time (in second), scan length (in cm), collimator width (in mm), CTDIvol (in mGy), and the Dose Length Product (in mGy.cm). The effective dose of each patient was estimated and calculated from the acquired data using a computer programming CTDosimetry version 1.0.4 (in Microsoft Excel) written and distributed by the ImpACTscan team of the UK. The results reveal that the CT-scanner in RSSA (General Electric Healthcare Inc. type HiSpeed DX/i) gave an average effective dose of 1.31 mSv for male patients and 1.19 mSv for female patients, the CT-scanner in RST (Siemens Healthcare System type Somatom Spirit) exposed the patients an average of 1.38 mSv for male patients and 1.32 mSv for female patients, and the CT-scanner in RSPN (Siemens Healthcare System type Somatom Emotion6) delivered an average dose of 2.06 mSv for male patients and 1.93 mSv for female patients. The calculations show that the Siemens Emotion6 delivered the highest dose and the CT GE HiSpeed DX/i delivered the lowest. This reveals that the system that employs an adaptive current supply (the GE) produces a lower radiation dose compared to the machines that use a fixed current technique (the Siemens). DAFTAR PUSTAKA Ambrose, J. (1973). "Computerized transverse axial scanning (tomography): Part 2. Clinical application." The British Journal of Radiology 46(552): 1023-1047. Ambrose, J. dan G. N. Hounsfield (1973). "Computerized transverse axial tomography." The British Journal of Radiology 46(542): 148-149. Amis, E. S., dkk. (2007). "American College of Radiology White Paper on Radiation Dose in Medicine." Journal of the American College of Radiology 4(5): 272-284. Bridge, L. R., dkk. (2005). "A local diagnostic reference level for velopharyngeal investigations." The British journal of radiology 78(931): 637-638. Brisse, H. J., dkk. (2009). "The relevance of image quality indices for dose optimization in abdominal multi-detector row CT in children: experimental." Physics in Medicine and Biology 54(7): 1871-1892. Cassen, B., dkk. (1950). "A sensitive directional gamma-ray detector." Nucleonics: 78-81. Cho, P., dkk. (2008). "The development of a diagnostic reference level on patient dose for CT examination in Korea." Radiation protection dosimetry 129(4): 463-468. Correa, S. C. A., dkk. (2008). "Dose-image quality study in digital chest radiography using Monte Carlo simulation." Applied Radiation and Isotopes 66(9): 1213-1217. D'Helft, C., dkk. (2007). Proposed diagnostic reference levels for 3 common cardiac interventional procedures in Ireland. Medical Imaging 2007: Physics of Medical Imaging, San Diego, CA, USA. EC (2000). EUR 16262: European guidelines on quality criteria for computed tomography. Luxembourg, European Commission. Einstein, A. J., dkk. (2008). "Radiation dose and cancer risk estimates in 16-slice computed tomography coronary angiography." Journal of Nuclear Cardiology 15(2): 232-240. Elliott, A. (2005). "Medical imaging." Nuclear Instruments and Methods in Physics Research A 546(1): 1-13. Francone, M., dkk. (2007). "Noninvasive imaging of the coronary arteries using a 64-row multidetector CT scanner: initial clinical experience and radiation dose concerns." La Radiologia medica 112(1): 31-46. Gustaf, U., dkk. (2006). "Towards optimization in digital chest radiography using Monte Carlo modelling." Physics in Medicine and Biology 51(11): 2729-2743. Hambali, A. S., dkk. (2009). "Entrance surface dose and image quality: comparison of adult chest and abdominal X-ray examinations in general practitioner clinics, public and private hospitals in Malaysia." Radiation protection dosimetry 133(1): 25-34. Heggie, J., dkk. (2006). "Importance in optimization of multi-slice computed tomography scan protocols." Australasian Radiology 50(3): 278 - 285. Hounsfield, G. N. (1973). "Computerized transverse axial scanning (tomography): Part 1. Description of system." The British Journal of Radiology 46(552): 1016-1022. Huda, W., dkk. (2004). "Patient size and x-ray technique factors in head computed tomography examinations. I. Radiation doses." Medical Physics 31(3): 588-594. Huda, W., dkk. (2004). "Patient size and x-ray technique factors in head computed tomography examinations. II. Image quality." Medical Physics 31(3): 595-601. Huda, W., dkk. (2008). "Effect of dose metrics and radiation risk models when optimizing CT xray tube voltage." Physics in Medicine and Biology 53(17): 4719-4732.21 Hujoel, P., dkk. (2008). "Head-and-neck organ doses from an episode of orthodontic care." American Journal of Orthodontics & Dentofacial Orthopedics 133(2): 210-217. ICRP (1977). ICRP Publication No. 26: The 1977 Recommendations of the International Commission on Radiological Protection. Oxford, International Commission on Radiological Protection. ICRP (2002). "Basic anatomical and physiological data for use in radiological protection: reference values: ICRP publication 89." Annals of the ICRP 32(3-4): 1-277. ICRP (2005). "Low-dose Extrapolation of Radiation-related Cancer Risk: ICRP publication 99."Annals of the ICRP 35(4): 1-142. ICRP (2007). "The 2007 Recommendations of the International Commission on Radiological Protection: ICRP publication 103." Annals of the ICRP 37(2-4): 1-332. ICRP (2007). "Managing Patient Dose in Multi-Detector Computed Tomography (MDCT): ICRP publication 102." Annals of the ICRP 37(1): 1-80. ImPACT-scan (2009). CTDosimetry. Ioana, dkk. (2008). "Update of diagnostic medical and dental x-ray exposures in Romania." Journal of Radiological Protection 28(4): 563-571. Jones, D. G. dan P. C. Shrimpton (1991). NRPB-R250: Survey of CT practice in the UK. Part 3: Normalised organ doses calculated using Monte Carlo techniques. Didcot, Oxforshire, UK, National Radiological Protection Board. Jones, D. G. dan P. C. Shrimpton (1993). NRPB-SR250: Normalised Organ Doses for XRay Computed Tomography Calculated Using Monte Carlo Techniques. Didcot, Oxforshire, UK, National Radiological Protection Board. Kalender, W. A., dkk. (2008). "Technical approaches to the optimisation of CT." Physica Medica 24(2): 71-79. Leschka, S., dkk. (2006). "Multidetector computed tomography of acute abdomen." Clinical Imaging 30(3): 226-226. Lin, Y.-C., dkk. (2002). "Helical computed tomography of the abdomen: evaluation of image quality using 1.0, 1.3, and 1.5 pitches." Chang Gung medical journal 25(2): 104-109. Livingstone, R. dan P. Dinakaran (2008). An Attempt to Establish Regional Diagnostic Reference Levels for CT Scanners in India. Marshall, N. W., dkk. (2000). "Diagnostic reference levels in interventional radiology." Physics in Medicine and Biology 45(12): 3833-3846. Muhogora, W. E., dkk. (2006). "Radiation doses to patients during selected CT procedures at four hospitals in Tanzania." European Journal of Radiology 57(3): 461-467. Ngaile, J. E., dkk. (2006). "Towards establishment of the national reference dose levels from computed tomography examinations in Tanzania." Journal of Radiological Protection 26(2): 213-225. Noor, J. A. E., dkk. (2010). "Estimation of the k-Value for Head CT Using ICRP 103 Tissue Weighting Factors." Radiation Protection Dosimetry(submitted). Parker, M. S., dkk. (2008). "Absorbed radiation dose of the female breast during diagnostic multidetector chest CT and dose reduction with a." Clinical Radiology 63(3): 278288. Scarfe, W. C., dkk. (2006). "Clinical applications of cone-beam computed tomography in dental practice." Journal (Canadian Dental Association) 72(1): 75-80. Shrimpton, P. C., dkk. (1991). NRPB-R249: Survey of CT practice in the UK. Part 2: Dosimetric aspects. Didcot, Oxforshire, UK, National Radiological Protection Board. Smans, K., dkk. (2005). "Towards a proposition of a diagnostic (dose) reference level for mammographic acquisitions in breast screening measurements in Belgium." Radiation protection dosimetry 117(1-3): 321-326. Toosi, M. T. B. dan M. Asadinezhad (2007). "Local diagnostic reference levels for some common diagnostic X-ray examinations in Tehran county of Iran." Radiation protection dosimetry 124(2): 137-144. UNSCEAR (2000). 2000 Report to the General Assembly: Sources and Effects of Ionizing Radiation. New York, United Nations. Verdun, F. R., dkk. (2005). "Diagnostic and interventional radiology: a strategy to introduce reference dose level taking into account the national practice." Radiation protection dosimetry 114(1-3): 188-191. Vite, C., dkk. (2006). Dosimetric and image quality assessment of different acquisition protocols of a novel 64-slice CT scanner. Medical Imaging 2006: Physics of Medical Imaging, San Diego, CA, USA. Wiest, P. W., dkk. (2002). "CT scanning: A major source of radiation exposure." Seminars in Ultrasound, CT, and MRI 23(5): 402-410. Zdesar, U. (2008). "Reference levels for image quality in mammography." Radiation protection dosimetry 129(1-3): 170-172.