Download Penentuan Dose Reference Level (DRL)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Bidang Ilmu:
FISIKA MEDIS
LAPORAN PENELITIAN HIBAH BERSAING
TAHUN ANGGARAN 2011
Penentuan Dose Reference Level (DRL) pada Prosedur Diagnosis Kepala
Menggunakan CT-scan sebagai Upaya Proteksi Radiasi
kepada Pasien secara Nasional
Drs. Johan Andoyo Effendi Noor, M.Sc., Ph.D.
dr. Indrastuti Normahayu, Sp.R.
Dibiayai oleh Direktorat Jenderal Pendidian Tinggi, Kementerian Pendidikan Nasional, melalui
DIPA Universitas Brawijaya REV.1 Nomor: 0636/023-04.2.16/15/2011 R,
tanggal 30 Maret 2011 dan berdasarkan surat dari DP2M Dikti Nomor: 121/D3/PL/2011
tanggal 7 Februari 2011
UNIVERSITAS BRAWIJAYA
NOPEMBER 2011
RINGKASAN
Salah satu aspek penting yang sangat diperlukan oleh seorang dokter, khususnya
dokter
spesialis penyakit dalam, dalam melakukan diagnosis suatu penyakit adalah keberadaan
dari citra organ-organ dalam tubuh yang sedang didiagnosis. Dengan bantuan citra bagian
dalam tubuh tersebut seorang dokter dapat melakukan diagnosis dengan lebih cermat,
sehingga terhindar dari kemungkinan salah diagnosis.
Sejarah pencitraan medis berawal dari ditemukannya sinar-x oleh Wilhelm Conrad
Röntgen pada tahun 1895. Citra sinar-x pertama atas organ tubuh manusia adalah foto
sinar-x tangan istrinya. Oleh sebab itu sampai saat ini foto-foto yang dibuat dengan
menggunakan modalitas sinar-x sering juga disebut dengan foto Röntgen. Kemudian
seiring dengan kemajuan di bidang komputasi, baik dalam bidang perangkat keras maupun
perankat lunaknya, teknik pencitraan dengan sinar-x telah mengalami kemajuan dengan
munculnya teknik Computerised Tomography, yang dikenal dengan CT-scan, yang pertama
kali diperkenalkan oleh Sir Godfrey Hounsfield (Hounsfield, 1973) pada tahun 70-an.
Sinar-x merupakan sepenggal spektrum gelombang elektromagnetik yang terletak di
ujung energi tinggi spektrum gelombang elektromagnetik di bawah dan bersingungan
dengan sinar gamma. Sinar-x mempunyai kemampuan yang sama dengan sinar gamma
dalam mengionkan benda-benda yang dilaluinya, sehingga keduanya juga dikenal sebagai
sinar pengion. Jika proses ionisasi ini terjadi pada jaringan lunak organ maupun cairan di
dalam tubuh manusia, maka bisa mengakibatkan terjadinya kerusakan sel, mutasi gen,
terbentuknya radikal bebas, dan sel-sel kanker.
Proteksi radiasi di dalam praktik pencitraan diagnostik dimaksudkan untuk menjamin
bahwa keuntungan penggunaan sumber radiasi lebih besar dari risikonya terhadap individu
yang terlibat. Optimasi proteksi dan keselamatan dilakukan dengan prinsip “As Low As
Reasonably Achievable.” Penggunaan berkas pengion sinar-x di dalam praktek pencitraan
diagnostik telah mengalami kemajuan yang sangat pesat, baik dari sisi teknik pengambilan
data, kualitas citra yang dihasilkan maupun jumlah tindakan. Dalam aplikasi radiasi, dosis
efektif merupakan parameter yang digunakan untuk menyatakan dan membandingkan
dosis radiasi yang diberikan kepada pasien.
The International Commission on Radiological Protection (ICRP) telah
mengeluarkan rekomendasi dosis efektif yang aman bagi manusia yang bisa digunakan
sebagai standar acuan. Sehingga Pemerintah Republik Indonesia sangat perlu mempunyai
standar nasionalnya yang mengacu kepada standar internasional ini.
Penelitian pada tahun pertama ini dilakukan dengan mengukur, menghitung dan
menganalisis dosis efektif pencitraan sinar-x pada mesin CT-scan di Instalasi Radiologi di
tiga rumah sakit besar di kota Malang, yaitu Rumah Sakit Saiful Anwar (RSSA), Rumah
Sakit Tentara Soepraoen (RST), dan Rumah Sakit Panti Nirmala (RSPN), yang diambil
sebagai rumah sakit peserta. Pengukuran dosis dilakukan pada pasien yang menjalani
eksaminasi kepala di rumah sakit peserta. Parameter-parameter CT yang diambil antara
lain: tegangan tabung (dalam kVp), arus tabung (dalam mA), waktu pemindaian (dalam
detik), panjang pindai (scan length
dalam cm), lebar kolimator (dalam mm), CTDIvol (dalam mGy), dan Dose Length Product
(DLP dalam mGy.cm). Dari data-data tersebut kemudian dihitung besar dosis efektif yang
diterima oleh pasien dengan menggunakan program komputer perhitungan CTDosimetry
versi 1.0.4 (dengan program Microsoft Excel) yang dibuat oleh ImpACTscan Inggris.
Hasil-hasil yang telah diperoleh memperlihatkan bahwa mesin CT scan di RSSA
(buatan General Electric Healthcare Inc. dengan tipe HiSpeed DX/i) memberikan dosis
efektif rata-rata sebesar 1,31 mSv untuk pasien laki-laki dan 1,19 mSv untuk pasien
prempuan, mesin di RST (buatan Siemens Healthcare System dengan tipe Somatom Spirit)
memberikan dosis efektif ratarata sebesar 1,38 mSv untuk pasien laki-laki dan 1,32 mSv
untuk pasien prempuan, dan mesin di RSPN (buatan Siemens Healthcare System dengan
tipe Emotion6) memberikan dosis efektif rata-rata sebesar 2,06 mSv untuk pasien laki-laki
dan 1,93 mSv untuk pasien prempuan. Tampak dari hasil-hasil tersebut mesin Siemens
Emotion6 memberikan dosis paling tinggi dan mesin CT GE HiSpeed DX/i memberikan
dosis efektif paling kecil. Secara umum, mesin yang menerapkan pencatuan arus adaptif
(GE) memberikan dosis yang lebih kecil dibandingkan dengan mesin yang arusnya dicatu
secara tetap/konstan (Siemens).
SUMMARY
One important tool required by a medical doctor, especially an internist, in
conducting a clinical diagnose is internal images of the body under investigation. The
images will help the doctor in diagnosing his/her patients more accurately to avoid any
misdiagnose.
The history of medical imaging started after the discovery of x-ray by Wilhelm
Conrad Röntgen in 1895. The first x-ray image of human body ever made was the image of
the hand of Mrs. Röntgen. The photography that utilizes x-ray beam to produce images is
called a Röntgen photography. In the wake of and advances in computing technology, both
in hardware and software aspects, the x-ray imaging technology follows by the invention of
the Computerized Tomography, also known as CT-scan, by Sir Godfrey Hounsfield
(Hounsfield, 1973) in early 70‘s.
X-rays lie in the high energy end of the electromagnetic spectrum just below and
overlap with the gamma-rays. Therefore, x-ray has the similar capability to gamma-ray in
ionizing matters they are passing through. This capability makes them be called ionizingrays. If the ionization occurs in soft tissues of the organs or to the electrolites in the body,
cell damage, gen mutation, free radical formation, dan cancer cells production may result in.
Radiation protection in diagnostic imaging practices is aimed to ensure that the
benefits of the use of ionizing radiation exceed the risk resulted in to the individuals
involved. Protection and safety optimization is conducted using a principle of ALARA (As
Low As Reasonably Achievable). The employment of ionizing x-ray beam in the diagnostic
imaging practices has been advancing very rapidly in the aspects of image acquisition
technique, image quality, and the number of procedures carried out. In the application of
radiation, the effective dose is a parameter used to express and compare the radiation
doses received by patients.
The International Commission on Radiological Protection (ICRP) has published its
recommendation on the effective dose safe to humans that can be used as the reference
standard. In the sake of public protection, the Government of the Republic of Indonesia
must establish a national standard by adopting the ICRP standards.
The research in the first year was carried out by measuring, calculating, and
analyzing the effective doses from examinations using CT-scanners at the Department of
Radiology of three main hospitals in Malang: Rumah Sakit Saiful Anwar (RSSA), Rumah
Sakit Tentara Soepraoen (RST), and Rumah Sakit Panti Nirmala (RSPN), that were taken
as the participant hospitals. The dose estimations was conducted from patients sent to the
departments for head examinations. The CT parameters taken were: tube voltage (in kVp),
tube current (in mA), scan time (in second), scan length (in cm), collimator width (in mm),
CTDIvol (in mGy), and the Dose Length Product (in mGy.cm). The effective dose of each
patient was estimated and calculated from the acquired data using a computer
programming CTDosimetry version 1.0.4 (in Microsoft Excel) written and distributed by the
ImpACTscan team of the UK.
The results reveal that the CT-scanner in RSSA (General Electric Healthcare Inc.
type HiSpeed DX/i) gave an average effective dose of 1.31 mSv for male patients and 1.19
mSv for female patients, the CT-scanner in RST (Siemens Healthcare System type
Somatom Spirit) exposed the patients an average of 1.38 mSv for male patients and 1.32
mSv for female patients, and the CT-scanner in RSPN (Siemens Healthcare System type
Somatom Emotion6) delivered an average dose of 2.06 mSv for male patients and 1.93
mSv for female patients. The calculations show that the Siemens Emotion6 delivered the
highest dose and the CT GE HiSpeed DX/i delivered the lowest. This reveals that the
system that employs an adaptive current supply (the GE) produces a lower radiation dose
compared to the machines that use a fixed current technique (the Siemens).
DAFTAR PUSTAKA
Ambrose, J. (1973). "Computerized transverse axial scanning (tomography): Part 2. Clinical
application." The British Journal of Radiology 46(552): 1023-1047.
Ambrose, J. dan G. N. Hounsfield (1973). "Computerized transverse axial tomography." The
British Journal of Radiology 46(542): 148-149.
Amis, E. S., dkk. (2007). "American College of Radiology White Paper on Radiation Dose in
Medicine." Journal of the American College of Radiology 4(5): 272-284.
Bridge, L. R., dkk. (2005). "A local diagnostic reference level for velopharyngeal
investigations." The British journal of radiology 78(931): 637-638.
Brisse, H. J., dkk. (2009). "The relevance of image quality indices for dose optimization in
abdominal multi-detector row CT in children: experimental." Physics in Medicine and
Biology 54(7): 1871-1892.
Cassen, B., dkk. (1950). "A sensitive directional gamma-ray detector." Nucleonics: 78-81.
Cho, P., dkk. (2008). "The development of a diagnostic reference level on patient dose for
CT examination in Korea." Radiation protection dosimetry 129(4): 463-468.
Correa, S. C. A., dkk. (2008). "Dose-image quality study in digital chest radiography using
Monte Carlo simulation." Applied Radiation and Isotopes 66(9): 1213-1217.
D'Helft, C., dkk. (2007). Proposed diagnostic reference levels for 3 common cardiac
interventional procedures in Ireland. Medical Imaging 2007: Physics of Medical
Imaging, San Diego, CA, USA.
EC (2000). EUR 16262: European guidelines on quality criteria for computed tomography.
Luxembourg, European Commission.
Einstein, A. J., dkk. (2008). "Radiation dose and cancer risk estimates in 16-slice computed
tomography coronary angiography." Journal of Nuclear Cardiology 15(2): 232-240.
Elliott, A. (2005). "Medical imaging." Nuclear Instruments and Methods in Physics Research
A 546(1): 1-13.
Francone, M., dkk. (2007). "Noninvasive imaging of the coronary arteries using a 64-row
multidetector CT scanner: initial clinical experience and radiation dose concerns." La
Radiologia medica 112(1): 31-46.
Gustaf, U., dkk. (2006). "Towards optimization in digital chest radiography using Monte
Carlo modelling." Physics in Medicine and Biology 51(11): 2729-2743.
Hambali, A. S., dkk. (2009). "Entrance surface dose and image quality: comparison of adult
chest and abdominal X-ray examinations in general practitioner clinics, public and
private hospitals in Malaysia." Radiation protection dosimetry 133(1): 25-34.
Heggie, J., dkk. (2006). "Importance in optimization of multi-slice computed tomography
scan protocols." Australasian Radiology 50(3): 278 - 285.
Hounsfield, G. N. (1973). "Computerized transverse axial scanning (tomography): Part 1.
Description of system." The British Journal of Radiology 46(552): 1016-1022.
Huda, W., dkk. (2004). "Patient size and x-ray technique factors in head computed
tomography examinations. I. Radiation doses." Medical Physics 31(3): 588-594.
Huda, W., dkk. (2004). "Patient size and x-ray technique factors in head computed
tomography examinations. II. Image quality." Medical Physics 31(3): 595-601.
Huda, W., dkk. (2008). "Effect of dose metrics and radiation risk models when optimizing
CT xray tube voltage." Physics in Medicine and Biology 53(17): 4719-4732.21
Hujoel, P., dkk. (2008). "Head-and-neck organ doses from an episode of orthodontic care."
American Journal of Orthodontics & Dentofacial Orthopedics 133(2): 210-217.
ICRP (1977). ICRP Publication No. 26: The 1977 Recommendations of the International
Commission on Radiological Protection. Oxford, International Commission on
Radiological Protection.
ICRP (2002). "Basic anatomical and physiological data for use in radiological protection:
reference values: ICRP publication 89." Annals of the ICRP 32(3-4): 1-277.
ICRP (2005). "Low-dose Extrapolation of Radiation-related Cancer Risk: ICRP publication
99."Annals of the ICRP 35(4): 1-142.
ICRP (2007). "The 2007 Recommendations of the International Commission on
Radiological Protection: ICRP publication 103." Annals of the ICRP 37(2-4): 1-332.
ICRP (2007). "Managing Patient Dose in Multi-Detector Computed Tomography (MDCT):
ICRP publication 102." Annals of the ICRP 37(1): 1-80.
ImPACT-scan (2009). CTDosimetry.
Ioana, dkk. (2008). "Update of diagnostic medical and dental x-ray exposures in Romania."
Journal of Radiological Protection 28(4): 563-571.
Jones, D. G. dan P. C. Shrimpton (1991). NRPB-R250: Survey of CT practice in the UK.
Part 3: Normalised organ doses calculated using Monte Carlo techniques. Didcot,
Oxforshire, UK, National Radiological Protection Board.
Jones, D. G. dan P. C. Shrimpton (1993). NRPB-SR250: Normalised Organ Doses for XRay Computed Tomography Calculated Using Monte Carlo Techniques. Didcot,
Oxforshire, UK, National Radiological Protection Board.
Kalender, W. A., dkk. (2008). "Technical approaches to the optimisation of CT." Physica
Medica 24(2): 71-79.
Leschka, S., dkk. (2006). "Multidetector computed tomography of acute abdomen." Clinical
Imaging 30(3): 226-226.
Lin, Y.-C., dkk. (2002). "Helical computed tomography of the abdomen: evaluation of image
quality using 1.0, 1.3, and 1.5 pitches." Chang Gung medical journal 25(2): 104-109.
Livingstone, R. dan P. Dinakaran (2008). An Attempt to Establish Regional Diagnostic
Reference Levels for CT Scanners in India.
Marshall, N. W., dkk. (2000). "Diagnostic reference levels in interventional radiology."
Physics in Medicine and Biology 45(12): 3833-3846.
Muhogora, W. E., dkk. (2006). "Radiation doses to patients during selected CT procedures
at four hospitals in Tanzania." European Journal of Radiology 57(3): 461-467.
Ngaile, J. E., dkk. (2006). "Towards establishment of the national reference dose levels
from computed tomography examinations in Tanzania." Journal of Radiological
Protection 26(2): 213-225.
Noor, J. A. E., dkk. (2010). "Estimation of the k-Value for Head CT Using ICRP 103 Tissue
Weighting Factors." Radiation Protection Dosimetry(submitted).
Parker, M. S., dkk. (2008). "Absorbed radiation dose of the female breast during diagnostic
multidetector chest CT and dose reduction with a." Clinical Radiology 63(3): 278288.
Scarfe, W. C., dkk. (2006). "Clinical applications of cone-beam computed tomography in
dental practice." Journal (Canadian Dental Association) 72(1): 75-80.
Shrimpton, P. C., dkk. (1991). NRPB-R249: Survey of CT practice in the UK. Part 2:
Dosimetric aspects. Didcot, Oxforshire, UK, National Radiological Protection Board.
Smans, K., dkk. (2005). "Towards a proposition of a diagnostic (dose) reference level for
mammographic acquisitions in breast screening measurements in Belgium."
Radiation protection dosimetry 117(1-3): 321-326.
Toosi, M. T. B. dan M. Asadinezhad (2007). "Local diagnostic reference levels for some
common diagnostic X-ray examinations in Tehran county of Iran." Radiation
protection dosimetry 124(2): 137-144.
UNSCEAR (2000). 2000 Report to the General Assembly: Sources and Effects of Ionizing
Radiation. New York, United Nations.
Verdun, F. R., dkk. (2005). "Diagnostic and interventional radiology: a strategy to introduce
reference dose level taking into account the national practice." Radiation protection
dosimetry 114(1-3): 188-191.
Vite, C., dkk. (2006). Dosimetric and image quality assessment of different acquisition
protocols of a novel 64-slice CT scanner. Medical Imaging 2006: Physics of Medical
Imaging, San Diego, CA, USA.
Wiest, P. W., dkk. (2002). "CT scanning: A major source of radiation exposure." Seminars in
Ultrasound, CT, and MRI 23(5): 402-410.
Zdesar, U. (2008). "Reference levels for image quality in mammography." Radiation
protection dosimetry 129(1-3): 170-172.