* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Slide 1
Conservation of energy wikipedia , lookup
Density of states wikipedia , lookup
Bohr–Einstein debates wikipedia , lookup
Quantum electrodynamics wikipedia , lookup
Neutron detection wikipedia , lookup
Photon polarization wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Basic Detection Techniques wnb060905 BDT-I 1 Detector • More than ‘sensing device’ • Measuring – ‘Meten is weten’ • Meta information • Counting vs analog rms wnb060905 N BDT-I 2 Poisson wnb060905 BDT-I 3 Gaussian wnb060905 BDT-I 4 Accuracy • Distribution: stochastic measurement process only • ==Precision • Accuracy -> no systematic – Hubble – Target shooting wnb060905 BDT-I 5 Statistics • • • • Mean Variance Chi-squared Median 1 mean x n xi n 2 1 2 var n xi x (sample var) n chi squared 2 n xi2 wnb060905 BDT-I 6 Moments Central moments k x x f x dx k 0 1 1 0 2 2 3 0 ? • skewness wnb060905 BDT-I 7 Systematic errors • Instrument environment widest sense – Coal – Parallax – Gaia • Gal rotation • Pressure • Model -> none • Outliers wnb060905 BDT-I 8 Modelling • Solve • L2 (least-squares) • L1 (outliers) wnb060905 BDT-I 9 (In)direct • Direct – Raindrops – Planet directly • Indirect – Crop size – ‘systematic’ movement of Centre of G. • ‘Test particle’ wnb060905 BDT-I 10 Measurables • • • • EM waves Neutrinos Matter (nuclei -> meteorites & space craft) Gravitational waves (<=c) wnb060905 BDT-I 11 Neutrinos Weak interaction: electron neutrinos n p e e p n e e Strong interaction Tau & muon neutrinos wnb060905 BDT-I 12 Neutrinos 2 • • • • • • Long pathlength -> memory 1931: Pauli – 1959: e – 1962: new muon Indirect Icecube Ocean Moon wnb060905 BDT-I 13 Neutrino 3 • Solar problem • 1987 SN -> 19 neutrinos (water, proton decay) • 50000 tons; 11000 PMT (50cm) • Mass < 2.2eV wnb060905 BDT-I 14 Cherenkov wnb060905 BDT-I 15 GW • 10-38 weaker than EM force • Transparant universe • Tensor (cf vector and potential) • Helicity +-2 (+-1) wnb060905 BDT-I 16 GW 2 • Direct resonant – – • Direct non-resident – • • • Block > 1 ton Al; eigen freq. 1.5Hz Coincident Michelson between 2 blocks (multiple reflections) Interferometer LISA, in 2015 5Gm long 3. Indirect: (but questioned again) – – – dP/dt decay in binary pulsar. Calculated: -2.403(0.002) 10-12 ss-1 Observed -2.4 (0.09) 10-12 ss-1 wnb060905 BDT-I 17 Matter • Cosmic Rays (later lecture) – Pierre Auger (AR) + Northern – LOFAR • Meteorites -> history • Returning spacecraft wnb060905 BDT-I 18 EM radiation • • • • • Energy == wavelength == frequency Flux Time variation Spatial dependence Polarisation: – Only ‘directional’ measurement (magnetic field) • Resolution in all: – Uncertainty – ‘aperture’ wnb060905 BDT-I 19 EM radiation I Q f (t , , l , m, ) U V •Not all simultaneous -- choose wnb060905 BDT-I 20 Spectrum wnb060905 BDT-I 21 • • • • • • • • • • 21 cm = 1420 MHz [Hyperfine line, HI] 1 cm = 30 GHz 1 mm = 300 GHz = 1000μm 1 μm = 1000 nm 550 nm = 5.5 × 1014 Hz [V band centre] 1 eV = 1.60 × 10−12 erg = 1240 nm 13.6 eV = 91.2 nm [Lyman limit = IP of HI] 1 keV = 1.24 nm = 2.4 × 1017 Hz 1 PHz = 1015 Hz (petahertz) mec2 = 511 keV wnb060905 BDT-I 22 Sensitivity Faintest UVOIR point source detected: • Naked eye: 5-6 mag • Galileo telescope (1610): 8-9 mag • Palomar 5-m (1948): 21-22 mag (pg), • 25-26 mag (CCD) • Keck 10-m (1992): 27-28 mag • HST (2.4-m in space, 1990): 29-30 mag wnb060905 BDT-I 23 Measure Flux is the energy incident per unit time per unit area within a defined EM band: f ≡ Ein band/A t (or power per unit area) Usually quoted at top of Earth’s atmosphere o “Bolometric”: all frequencies o Finite bands (typically 1-20%) defined by, e.g., filters such as U,B,V,K o “Monochromatic”: infinitesimal band, ν → ν + dν Also called “spectral flux density” Denoted: fν or fλ Note conversion: since fνdν = fλdλ and ν = c/λ, → νfν = λfλ wnb060905 BDT-I 24 Flux 2 1 Jy = 10−26 W m−2 Hz−1 [= 10−23 erg s−1 cm−2 Hz−1] non SI Monochromatic Apparent Magnitudes o mλ ≡ −2.5 log10 fλ − 21.1, where fλ is in units of erg s−1 cm−2 A−1 o Normalization is chosen to coincide with the zero point of the widelyused “visual” or standard “broad-band” V magnitude system: i.e. mλ(5500 ˚A) = V o Zero Point: fluxes at 5500 ˚A corresponding to mλ(5500˚A) = 0, are (Bessell 1998) f0 ν = 3630 Jy (janskys) or 3.63 × 10−20 erg s−1 cm−2 Hz−1 λ/hν = 1005 photons cm−2 s−1 A−1 is the corresponding photon rate per unit wavelength wnb060905 BDT-I 25 Flux 3 • Absolute Magnitudes o M ≡ m− 5 log10(D/10), where D is the distance to the source in parsec o M is the apparent magnitude the source would have if it were placed at a distance of 10 pc. o M is an intrinsic property of a source o For the Sun, MV = 4.83 wnb060905 BDT-I 26 Flux 4 • Luminosity L (W) – Power (energy/s) radiated by source into 4π sterad • Flux (W m-2) – f = L/4πD2 if source isotropic, no absorption • Brightness I (W m-2 sr-1) – f ~ IΔΩ wnb060905 BDT-I 27 Planck 2h 3 1 B , T 2 h / kT c e 1 wnb060905 BDT-I 28 Planck 2 • Limiting forms: • hν/kT << 1 → Bν(T) = 2kT /λ2 (“RayleighJeans”) • hν/kT >> 1 → Bν(T) = 2hν3 e−hν/kT /c2 (“Wien”) • Non-thermal B – T > 1020 wnb060905 BDT-I 29 Stars wnb060905 BDT-I 30 IR windows wnb060905 BDT-I μm 31 Atmosphere transmission wnb060905 BDT-I 32 QE Eye 10-20% Photographic 2-10% CCD 70-90% PMT 20-30% IR (HgCdTe) 30-50% CMOS 60-80% wnb060905 BDT-I 33 QE(2) wnb060905 BDT-I 34 Spectrum wnb060905 BDT-I 35 Detectors Bolometers • Most basic detector type: a simple absorber • Temperature responds to total EM energy deposited by all mechanisms during thermal time-scale • Electrical properties change with temperature • Broad-band (unselective); slow response • Primarily far infrared, sub-millimetre (but also high energy thermal pulse detectors) wnb060905 BDT-I 36 Bolometer wnb060905 BDT-I 37 Detectors 2 Coherent Detectors Multiparticle detection of electric field amplitude of incident EM wave • Phase information preserved • Frequency band generally narrow but tuneable • Heterodyne technique mixes incident wave with local oscillator • Response proportional to instantaneous power collected in band • Primarily radio, millimetre wave, but some IR systems with laser LOs wnb060905 BDT-I 38 Detectors 3 Photon Detectors • Respond to individual photon interaction with electron(s) • Phase not preserved • Broad-band above threshold frequency • Instantaneous response proportional to collected photon rate (not energy deposition) • Many devices are integrating (store photoelectrons prior to readout stage) • wnb060905 BDT-I 39 Detector 4 UVOIR, X-ray, Gamma-ray o Photo excitation devices: photon absorption changes distribution of electrons over states. E.g.: CCDs, photography o Photoemission devices: photon absorption causes ejection of photoelectron. E.g.: photocathodes and dynodes in photomultiplier tubes. o High energy cascade devices: X- or gamma-ray ionization, Compton scattering, pair-production produces multiparticle pulse. E.g. gas proportional counters, scintillators wnb060905 BDT-I 40 Detector 5 • Chemical detectors • Eye • Photographic plate wnb060905 BDT-I 41 Eye • Rods (10-20%) • Cones (1-2%) – 3 varieties • 1ps response; 1/20s integration; 15min to revitalise • Flashes wnb060905 BDT-I 42 Photographic • • • • - non-linear - low dynamic range + # pixels Photon excites e AgCl -> +Ag- into Ag.(defect) • Developing == amplification • Slow (but stroboscopic) wnb060905 BDT-I 43 PMT wnb060905 BDT-I 44 PMT-a wnb060905 BDT-I 45 PMT2 • QE 5-10% • UV/B poor in R/IR wnb060905 BDT-I 46 MCP wnb060905 BDT-I 47 MCP2 • • • • QE 20% Can be staggered (chevron) Up to million amplification 1-1000nm wnb060905 BDT-I 48 IPCS • TV: photo electron (from Si) stored in micro-capacitors • Scanned/recharged 25Hz -> discharge current • High readout noise (snow) • 1st intensifier 3 stage million gain • Read out == photon counting digital wnb060905 BDT-I 49 Image intensifier wnb060905 BDT-I 50 CCD • Charge Coupled Device wnb060905 BDT-I 51 CCD layout wnb060905 BDT-I 52 CCD transfer wnb060905 BDT-I 53 CCD readout wnb060905 BDT-I 54 CCD • • • • • • • • • Workhorse up to 1.1 um -> bandgap Dynamic range: bits; 30000:1 Linearity: same Read-out noise 2-3 eDark current (thermal) -> cool Shot noise: random photons Non-uniformity -> flat fielding Charge transfer efficiency (>.99999 has to be) Cosmic rays: pixel error wnb060905 BDT-I 55 CCD2 • • • • Large: 10.5 * 10.5 kpixel 4 stitched -> 500 million pixels Thinned back-illuminated: no reflection Thinned very expensive: fragile, but efficient wnb060905 BDT-I 56 CCD perfect? Cosmic rays Hot Spots (high dark current, but sometimes LEDs!) Bright Column (charge traps) wnb060905 Dark Columns (charge traps) QE variations BDT-I 57 CMOS • Complementary Metal Oxide Silicon • Direct readout • But: 15-30 photomasks; rather than 10 for CCD wnb060905 BDT-I 58 CMOS 2 wnb060905 BDT-I 59 NIR (hybrid) wnb060905 BDT-I 60 NIR • Similar to CCD • Non-Si layer to generate photo electrons: HgCdTe and InSb for between 0.9 and 25 um • Hybrid Si system: well developed • Cooled to 30-60K • Si part: CCD or MOS capacitors: direct read-out •Pixel cost 10* CCD (0.10-0.30 USD) wnb060905 BDT-I 61 SIS – BIB - SSPM • Superconductor-Insulator-Superconductor tunnel junctions • Blocked-Impurity-Band detectors • Solid-State-PhotoMultipliers • Josephson junctions wnb060905 BDT-I 62 Energy resolving STJ/TES wnb060905 BDT-I 63 STJ • • • • • • • Fast Spectral resolution 1000 UV->IR Cooled < 1K Magnetic field + Electric field 1 meV electron pair split (1eV for CCD!) More depending on energy wnb060905 BDT-I 64 Tip-tilt CCD wavefront wnb060905 BDT-I 65 Info • C.R. Kitchin, Astrophysical Techniques (0 7503 0946 6) • http://www.ctio.noao.edu/mailman/listinfo/ccdworld • Real life CCD: http://imaging.e2vtechnologies.com • Experimental Astronomy 2006 wnb060905 BDT-I 66