Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Defense Mechanisms and Immunology • Pulmonary surface-active material (surfactant) allows one to breathe effortlessly. • In the absence of surfactant, the work of breathing may increase from less than 2% to more than 10% of total oxygen consumption. • Surfactant provides the low surface tension at the air-liquid interface that is necessary to prevent atelectasis, alveolar flooding, and severe hypoxia. • surfactant is also important for maintaining the patency of small airways Surfactant Protein A • SP-A is not essential for normal metabolism and processing of surfactant in vivo • The major function of SP-A appears to be in innate immunity, in which • SP-A binds to a variety of microorganisms, • promotes their clearance by phagocytic cells, • and directly alters the function of immune effector cells • In humans, almost all the SP-A is found in the alveoli, • there is SP-A in human tracheal submucosal glands • low-level expression in some nonpulmonary tissues • SP-A–deficient mice are more susceptible to infection by : • group B Streptococcus, • Pseudomonas aeruginosa, • Haemophilus influenza, • respiratory syncytial virus, • Pneumocystis carinii. Bacteria • SP-A binds to and increases phagocytosis of Streptococcus pneumoniae, group A Streptococcus, and Staphylococcus aureus. • isolated SP-A binds to and increases the phagocytosis of H. influenzae, Klebsiella, and P. aeruginosa. • SP-A and SP-D could directly kill gram-negative bacteria by increasing their membrane permeability. Mycobacteria, Fungi, Mycoplasma, and Pneumocystis. • SP-A enhances the adherence and subsequent phagocytosis of mycobacteria by macrophages. • SP-A bound to Aspergillus fumigatus conidia and enhanced their phagocytosis and killing by human neutrophils and alveolar macrophages. • SP-A could directly kill extracellular, but not intracellular, Histoplasma. • SP-A appears to suppress the secretion of inflammatory cytokines by macrophages in the normal lung but enhances cytokine production during infection or lung injury. (inflammatory paradox of SP-A) • SP-A has also been shown to bind to apoptotic cells and to increase their uptake and removal by macrophages Surfactant Protein D • SP-D is a calcium-dependent lectin and an important component of innate immunity • The knockout mouse shows an accumulation of large foamy macrophages with excess metalloprotease activity alveolar wall destruction and subsequent air space enlargement • susceptible to infection with influenza A virus and Aspergillus. • annual severity of influenza infections is related to their ability to bind to SP-D : strains with less SP-D binding are more virulent. Innate Immunity in the Lungs • anatomic structure and epithelial cell lineages of the tracheobronchial tree • particles in excess of 10 µm in diameter are deposited on the mucus-coated surfaces of the nose, pharynx, trachea,descending airways Epithelium • The classic antimicrobial defense mechanism in the conducting airways is the mucociliary system, which moves microbes deposited on the airway epithelial surface upward and out of the lungs • major antibacterial components include • lysozyme, • lactoferrin, • β-defensins Neutrophils • PMNs serve as the immediate effector arm of the innate immune system • the pulmonary capillaries slow the transit of PMNs because of the small cross-sectional capillary diameter.This produces a reservoir of capillary PMNs that are poised to respond directly to signals from the innate immune system in the air spaces. • Once in the air spaces, PMNs ingest bacteria and fungi that have been opsonized by complement and immunoglobulins that accumulate in the air spaces at sites of inflammation. • PMNs contain a series of effector mechanisms to kill bacteria and fungi: • oxidant production, • microbicidal proteins in primary azurophilic granules, • extracellular traps. • When defensins are added to the phagolysosomal space, they attach to negatively charged microbial membranes via electrostatic interactions and are thought to form lytic pores in the microbial cell wall. • at sites of intense inflammation, PMNs release superoxide anion, H2O2, and granular contents directly into the extracellular environment, leading to oxidant formation in the alveolar spaces • PMNs can project uncoiled nuclear DNA into the surrounding environment to form NETs (neutrophil extracellular traps) that ensnare and destroy bacteria • NET formation depends on the initial respiratory burst of the PMN and leads to the death of the PMN in a process that is distinct from apoptosis and necrosis.