* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Sinai University Faculty of Engineering Science Department
Atomic theory wikipedia , lookup
Planck's law wikipedia , lookup
Franck–Condon principle wikipedia , lookup
Electron scattering wikipedia , lookup
Matter wave wikipedia , lookup
Double-slit experiment wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Sinai University Faculty of Engineering Science Department of Basic science From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© 1 Course name: Electrical materials Code: ELE163 Text references 1- Principles of Electronic Materials and Devices, 3rd edition 2- Kittel, Introduction to Solid State Physics 3-College Physics , Serway, 7th edition 4-Lecture notes (power points) 5- Internet sites Prepared by Pr Ahmed Mohamed El-lawindy [email protected] Faculty site: www.engineering.su.edu.eg From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© 2 These PowerPoint color diagrams can only be used by instructors if the 3rd Edition has been adopted for his/her course. Permission is given to individuals who have purchased a copy of the third edition with CD-ROM Electronic Materials and Devices to use these slides in seminar, symposium and conference presentations provided that the book title, author and © McGraw-Hill are displayed under each diagram. From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© Ch 3 Elementary Quantum Physics Introduction: Modern Physics: At the end of 1900 and beginning of 2000 century Quantum mechanics Theory of relativity • It can explain the electrical conductivity, The mean speed of electrons are independent of temperature. • Thermal radiation emitted by a black-body, • The modern definition of voltage and ohm are based on Josephson and quantum hall effect, both of which are quantum mechanical phenomena. Important discovery • • Wave-particle duality, light can be treated as photons which has no mass but momentum, h/l, and interact directly with electrons, like a particle. Also particles, electrons, can be treated as waves which scatter, diffract interfere, and etc…. From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© 3.1 Photons 3.1.1 Light as a wave Interference, diffraction, refraction, reflection are explained by the wave theory The classical view of light as an electromagnetic wave. An electromagnetic wave is a traveling wave with time-varying electric and magnetic fields that are perpendicular to each other and to the direction of propagation. Fig 3.1 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Light as a wave Traveling wave description E y ( x, t ) E o sin( kx t ) Intensity of light wave Is the energy flowing per unit per unit time k c 2 l vl k 2v 1 2 I c oE o 2 is the angular velocity, c speed of light k is the wave number l is the wave length From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Young`s Double slit interference S1 P S 2 P nλ n 1, 2, 3, ... constructi ve interferen ce 1 S1 P S 2 P (n )λ 2 n 1, 2, 3, Fig 3.2 destructiv e nterferenc e From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) X-ray diffraction Diffraction patterns obtained by passing X-rays through crystals can only be explained by using ideas based on the interference of waves. (a) Diffraction of Xrays from a single crystal gives a diffraction pattern of bright spots on a photographic film. (b) Diffraction of X-rays from a powdered crystalline material or a polycrystalline material gives a diffraction pattern of bright rings on a photographic film. Fig 3.3 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) (c) X-ray diffraction involves constructive interference of waves being "reflected" by various atomic planes in the crystal. Fig 3.3 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Bragg’s Law Bragg diffraction condition 2d sin θ nλ n 1, 2, 3, ... The equation is referred to as Bragg’s law, and arises from the constructive interference of scattered waves. From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Waves as particles • Light can behave like particles of zero rest mass. • This is the only way to explain a vast number of experiments, Photoelectric and Compton effects. • One can view light as a stream of discrete entities or energy packets called photons. • Each photon carry a quantum of energy hn and momentum h/l, where h is Plank`s constant, l is the wavelength, and n is the light frequency. From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 3.1.2 The photoelectric effect. Fig 3.4 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) eV0= ½ mev2=KEm (a) Photoelectric current vs. voltage when the cathode is illuminated with light of identical wavelength but different intensities (I). The saturation current is proportional to the light intensity (b) The stopping voltage and therefore the maximum kinetic energy of the emitted electron increases with the frequency of light u. (Note: The light intensity is not the same) Results from the photoelectric experiment. Fig 3.5 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) The effect of varying the frequency of light and the cathode material in the photoelectric experiment. The lines for the different materials have the same slope h but different intercepts Fig 3.6 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Photoelectric Effect Photoemitted electron’s maximum KE is KEm KEm hu hu0 Work function, F0 The constant h is called Planck’s constant. From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) The PE of an electron inside the metal is lower than outside by an energy called the workfunction of the metal. Work must be done to remove the electron from the metal. Fig 3.7 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Intuitive visualization of light consisting of a stream of photons (not to be taken too literally). SOURCE: R. Serway, C. J. Moses, and C. A. Moyer, Modern Physics, Saunders College Publishing, 1989, p. 56, figure 2.16 (b). Fig 3.8 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Light Intensity (Irradiance) Classical light intensity 1 2 I c oE o 2 In the photonic interpretation of light, Light Intensity I ph hu Photon flux ph N ph At From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Light consists of photons From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© X-rays are photons X-ray image of an American one-cent coin captured using an x-ray a-Se HARP camera. The first image at the top left is obtained under extremely low exposure and the subsequent images are obtained with increasing exposure of approximately one order of magnitude between each image. The slight attenuation of the X-ray photons by Lincoln provides the image. The image sequence clearly shows the discrete nature of x-rays, and hence their description in terms of photons. SOURCE: Courtesy of Dylan Hunt and John Rowlands, Sunnybrook Hospital, University of From Principles of Electronic Toronto. Materials and Devices, Third Edition, S.O. Kasap (© 3.1.3 Compton effect KE= hn-hn` P=h/l 2n Ehn(h/2) Scattering of an X-ray photon by a “free” electron in a conductor. Fig 3.9 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) The Compton experiment and its results From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 3.1.4 Black body radiation Experimental observation A- All objects emit and absorb energy in the form of radiation B- The energy of such radiation, thermal radiation, depends on the radiation wavelength and temperature. Object in thermal equilibrium with its surrounding, i.e. both has the same temperature: Absorb as much energy as it emits If the temperature of the object above the temperature of its surrounding, there is a net emission of radiation energy The maximum amount of energy emitted by an object is called black radiation From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) body 3.1.4 Black body radiation Il is the spectral irradiance: the emitted radiation energy (power per unit area) per unit wavelength Ildl is the intensity in a small range of wavelength Spectral irradiance vs. wavelength at two temperatures (3000K is about the temperature of the incandescent tungsten filament in a light bulb.) We assume that the characteristics of the radiation emerging from the aperture represent those of the radiation within the cavity Fig 3.11 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Classical physics Classical physics predicts that the acceleration and deceleration of the charges due to various thermal vibration, oscillation, or motion of atoms in the surface region of the cavity material results in electromagnetic waves, which interfere with each other producing standing waves with different wavelengths, of energy kT. Ilα 1/l4 and Ilα T Fig 3.11 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Black Body Radiation Plank showed that the experimental data can be explained if we assume that the radiation within the cavity involves the emission and absorption of discrete amount of energy by the oscillation of the molecules of the cavity Planck’s radiation law 2hc 2 Il hc 5 l exp 1 lkT Stefan’s black body radiation law Stefan’s constant 2 5 k 4 4 T Ps I l dl 2 3 15c h 0 PS S T 4 2 5 k 4 S 2 3 5.670 108 W m 2 K 4 15cof Electronic h Materials and From Principles Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Wien`s displacement law lmax T~ 2.89x10-3 mK Fig 3.11 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Assignment • Draw the equation at different temperature, 3000K and 2500 K at different wavelengths, from 0 mm to 5 mm in steps of 0.1 mm. 2hc 2 Il hc 5 l exp 1 lkT • Please E-mail your result to • [email protected] From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Example 3.4 Stefan’s law for real surfaces Electromagnetic radiation emitted from a hot surface Pradiation = total radiation power emitted (W = J s-1) Pradiation S S [T T ] 4 S = Stefan’s constant, W m-2 K-4 = emissivity of the surface = 1 for a perfect black body < 1 for other surfaces S = surface area of emitter (m2) From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 4 0 3.2 The electron as a wave From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Young’s double-slit experiment with electrons involves an electron gun and two slits in a Cathode ray tube (CRT) (hence, in vacuum). Electrons from the filament are accelerated by a 50 kV anode voltage to produce a beam that is made to pass through the slits. The electrons then produce a visible pattern when they strike a fluorescent screen (e.g., a TV screen), and the resulting visual pattern is photographed. SOURCE: Pattern from C. Jonsson, D. Brandt, and S. Hirschi, Am. J. Physics, 42, 1974, p.9, figure 8. Used with permission. Fig 3.12 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Fig 3.13 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) Fig 3.13 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) The diffraction of electrons by crystals gives typical diffraction patterns that would be Expected if waves being diffracted as in x-ray diffraction with crystals [(c) and (d) from A. P. French and F. Taylor, An Introduction to Quantum Mechanics (Norton, New York, 1978), p. 75; (e) from R. B. Leighton, Principles of Modern Physics, McGraw-Hill, 1959), p. 84. Fig 3.13 From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005) 3.2.1 De Broglie Relationship Wavelength l of the electron depends on its momentum p De Broglie relations Examples h l p OR p h l 1- A 50 g golf ball at a velocity of 20 m/s h h 6.63x10 34 Js 34 l -1 6 , 63 x 10 m 3 1 2- A proton travelling at 2200 ms l= 0.18 nm p mv (50 x10 kg)( 20ms ) 3- Electron accelerated by 100 V l= 0.123 nm From Principles of Electronic Materials and Devices, Third Edition, S.O. Kasap (© McGraw-Hill, 2005)