* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Recursion
Java (programming language) wikipedia , lookup
C Sharp syntax wikipedia , lookup
Scala (programming language) wikipedia , lookup
Join-pattern wikipedia , lookup
Functional programming wikipedia , lookup
Java performance wikipedia , lookup
C Sharp (programming language) wikipedia , lookup
Algorithm characterizations wikipedia , lookup
Recursion Recursive definitions Recursive methods Run-time stack & activation records => Read section 2.3 1 Recursion is a math and programming tool Technically, not necessary Wasn’t available in early programming languages Advantages of recursion Some things are very easy to do with it, but difficult to do without it Frequently results in very short programs/algorithms Disadvantages of recursion Somewhat difficult to understand at first Often times less efficient than non-recursive counterparts Presents new opportunities for errors and misunderstanding Tempting to use, even when not necessary Recommendation – use with caution, and only if helpful 2 Recursive Definitions Factorial – Non-recursive Definition: N! = N * (N-1) * (N-2) * … * 2 * 1 *Note that a corresponding Java program is easy to write public static int fact(int n) : 3 Recursive Definitions Factorial - Recursive Definition: N! = { 1 if N=1 Basis Case N * (N-1)! if N>=2 Recursive Case Why is it called recursive? Why do we need a basis case? Note that the “recursive reference” is always on a smaller value. 4 Recursive Definitions Fibonacci - Non-Recursive Definition: 0 1 1 2 3 5 8 13 21 34 … *Note that a corresponding Java program is easy to write…or is it? public static int fib(int n) : 5 Recursive Definitions Fibonacci - Recursive Definition: fib(N) = { 0 if N=1 Basis Case 1 if N=2 Basis Case fib(N-1) + fib(N-2) if N>=3 Recursive Case Note there are two basis cases and two recursive references. 6 Recursive Java Programs Printing N Blank Lines – Non-Recursive: public static void NBlankLines(int n) { for (int i=1; i<=n; i++) System.out.println(); } 7 Recursive Java Programs Printing N Blank Lines – Recursive: // NBlankLines outputs n blank lines, for n>=0 public static void NBlankLines(int n) { if (n <= 0) Basis Case return; else { System.out.println(); NBlankLines(n-1); Recursive Case } } *Don’t ever write it this way; this is a simple, first example of recursion. 8 Recursive Java Programs Another Equivalent Version (slightly restructured): // NBlankLines outputs n blank lines, for n>=0 public static void NBlankLines(int n) { if (n > 0) { System.out.println(); NBlankLines(n-1); } } 9 Recursive Java Programs public static void main(String[] args) { : NBlankLines(3); : } public static void NBlankLines(int n) { n=3 public static void NBlankLines(int n) { if (n > 0) { n=1 if (n > 0) { System.out.println(); System.out.println(); NBlankLines(n-1); NBlankLines(n-1); } } } } public static void NBlankLines(int n) { n=2 public static void NBlankLines(int n) { if (n > 0) { if (n > 0) { System.out.println(); System.out.println(); NBlankLines(n-1); NBlankLines(n-1); } } } } 10 n=0 Recursive Java Programs A Similar Method: public static void TwoNBlankLines(int n) { if (n > 0) { System.out.println(); TwoNBlankLines(n-1); System.out.println(); } } 11 Recursive Java Programs public static void main(String[] args) { : TwoNBlankLines(2); : } public static void TwoNBlankLines(int n) { n=2 public static void TwoNBlankLines(int n) { if (n > 0) { if (n > 0) { System.out.println(); System.out.println(); TwoNBlankLines(n-1); TwoNBlankLines(n-1); System.out.println(); System.out.println(); } } } } public static void TwoNBlankLines(int n) { n=1 if (n > 0) { System.out.println(); TwoNBlankLines(n-1); System.out.println(); } } 12 n=0 Are the Following Methods the Same or Different? public static void TwoNBlankLines(int n) { if (n > 0) { System.out.println(); System.out.println(); TwoNBlankLines(n-1); } } public static void TwoNBlankLines(int n) { if (n > 0) { TwoNBlankLines(n-1); System.out.println(); System.out.println(); } } 13 Recursive Factorial Definition: N! = { 1 N * (N-1)! if N=1 Basis Case if N>=2 Recursive Case Recursive Factorial Program: public static int fact (int n) { if (n==1) return 1; else { int x; x = fact (n-1); Basis Case Recursive Case return x*n; } } 14 Another Version: public static int fact (int n) { if (n==1) return 1; Basis Case return n*fact (n-1); Recursive Case else } 15 Recursive Fibonacci Definition: fib(N) = { 0 if N=1 1 if N=2 fib(N-1) + fib(N-2)if N>=3 Basis Case Basis Case Recursive Case Recursive Fibonacci Program: public static int fib (int n) { if (n==1) return 0; else if (n==2) return 1; else { int x,y; x = fib (n-1); y = fib (n-2); return x+y; } } Basis Case Basis Case Recursive Case 16 Another Version: public static int fib (int n) { if (n==1) return 0; else if (n==2) return 1; else return fib(n-1) + fib(n-2); } 17 Recursion & the Run-time Stack How does recursion related to stack frames and the run time stack? Note that stack frames are sometimes called allocation records or activation records Why might a recursive program be less efficient than nonrecursive counterpart? Why is the recursive fibonnaci function especially inefficient? 18