Download document 8577535

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Trigonometric functions wikipedia , lookup

Transcript
c Dr Oksana Shatalov, Fall 2012
1
8.2: Trigonometric Integrals
Recall:
sin2 x + cos2 x =
tan2 x +
1
1
= sec2 x
half-angle identities:
sin2 x =
1
(1 − cos 2x)
2
cos2 x =
1
(1 + cos 2x)
2
sin x cos x =
Z
EXAMPLE 1. Evaluate I =
Z
EXAMPLE 2. Evaluate I =
cos x sin2011 x dx
sin5 x dx
1
sin 2x
2
c Dr Oksana Shatalov, Fall 2012
2
Z
EXAMPLE 3. Evaluate I =
Z
RULE: How to evaluate
sin2010 x cos3 x dx
sinn x cosm x dx
1. If n is odd use substitution u = cos x ( Strip out one sine and convert the rest to cosine.)
2. If m is odd use substitution u = sin x ( Strip out one cosine and convert the rest to sine.)
3. If both n and m are odd use 1 or 2.
4. If both n and m are even, use the half-angle identities:
Z π/2
EXAMPLE 4. Evaluate I =
sin2 x dx
0
c Dr Oksana Shatalov, Fall 2012
3
Z
EXAMPLE 5. Evaluate I =
Z
RULE: How to evaluate
sin2 x cos2 x dx
secn x tanm x dx
1. If n is even use formula sec2 x = 1 + tan2 x and substitution
u = tan x
⇒
du = sec2 xdx.
2. If m is odd use formula tan2 x = sec2 x − 1 and substitution
u = sec x
Z
REMARK 6. Integral
⇒
du = sec x tan xdx
cscn x cotm x dx can be found by similar methods because of the identity
1 + cot2 x = csc2 x
Z
EXAMPLE 7. Evaluate I =
sec2011 x tan5 x dx
c Dr Oksana Shatalov, Fall 2012
4
Z
EXAMPLE 8. Evaluate I =
sin10 x
dx
cos14 x
Z
RULE: How to evaluate
Z
sin(Ax) cos(Bx) dx,
Z
sin(Ax) sin(Bx) dx,
Use the following identities:
sin A cos B =
sin A sin B =
cos A cos B =
1
(sin(A
2
1
(cos(A
2
1
(cos(A
2
− B) + sin(A + B))
− B) − cos(A + B))
− B) + cos(A + B))
Z
EXAMPLE 9. Evaluate I =
cos (25x) cos(4x) dx
cos(Ax) cos(Bx) dx