* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Localized surface plasmon resonances
Optical flat wikipedia , lookup
Magnetic circular dichroism wikipedia , lookup
Silicon photonics wikipedia , lookup
Harold Hopkins (physicist) wikipedia , lookup
Vibrational analysis with scanning probe microscopy wikipedia , lookup
Nonimaging optics wikipedia , lookup
Photon scanning microscopy wikipedia , lookup
Nonlinear optics wikipedia , lookup
Scanning electrochemical microscopy wikipedia , lookup
Retroreflector wikipedia , lookup
Ultraviolet–visible spectroscopy wikipedia , lookup
Anti-reflective coating wikipedia , lookup
Thomas Young (scientist) wikipedia , lookup
Nanophotonics Class 2 Surface plasmon polaritons Surface plasmon polariton: EM wave at metal-dielectric interface z x i k x k z t Ed x, z, t Ed ,0e x z i k xk z t Em ( x, z, t ) Em,0e x z For propagating bound waves: - kx is real - kz is imaginary EM wave is coupled to the plasma oscillations of the surface charges Derivation of surface plasmon dispersion relation: k() 2 2 Ed ,m 2 k Wave equation: E d , m 0 d , m 0 d , m 2 t Substituting SP wave + boundary conditions leads to the Dispersion relation: x-direction: m d k x k ' x ik "x c m d 1/ 2 k Note: in regular dielectric: c k Dispersion relation: x-direction: z-direction: m d k x k ' x ik "x c m d k z ,m 2 1/ 2 1/ 2 k ' z ,m ik"z ,m c m d m2 Bound SP mode: kz imaginary: m + d < 0, kx real: m < 0 so: m < -d k c Dielectric constant of metals Drude model: conduction electrons with damping: equation of motion d 2x dx m 2 m eE0 e it dt dt no restoring force 2 p2 P Nex Ne 1 1 1 1 2 2 0E 0E m 0 i i with collision frequency and plasma frequency If << p, then: p2 p2 ' 1 2 , " 3 Ne 2 p m 0 Measured data and model for Ag: Drude model: 50 p2 p2 ' 1 2 , " 3 " 0 -50 -100 Measured data: ' " Drude model: ' " Modified Drude model: ' Modified Drude model: ' p2 p2 ' 2 , " 3 -150 200 400 600 800 1000 1200 Wavelength (nm) 1400 1600 1800 Contribution of bound electrons Ag: 5.45 Bound SP modes: m < -d 50 " 0 -50 -100 -d Measured data: ' " ' Drude model: ' "bound SP mode: < - m d Modified Drude model: ' -150 200 400 600 800 1000 1200 Wavelength (nm) 1400 1600 1800 m d Surface plasmon dispersion relation: k x c m d ck x Radiative modes d 'm > 0) 1/ 2 real kx real kz p Quasi-bound modes d < 'm < 0) p imaginary kx real kz 1 d Dielectric: d z x Bound modes ('m < d) Metal: m = m' + m" Re kx real kx imaginary kz m d Surface plasmons dispersion: k x c m d ck x d 1/ 2 large k small wavelength 3.4 eV (360 nm) Ag/SiO2 Ar laser: vac = 488 nm diel = 387 nm SP = 100 nm X-ray wavelengths at optical frequencies k Re kx 2 Surface plasmon dispersion for thin films Drude model Two modes appear ε1(ω)=1-(ωp/ω) 2 Thinner film: Shorter SP wavelength Propagation lengths: cm !!! (infrared) Example: HeNe = 633 nm SP = 60 nm LL-(symm) L+(asymm) Cylindrical metal waveguides E Fundamental SPP mode on cylinder: • E r z k Can this adiabatic coupling scheme be realized in practice? taper theory first demonstrated by Stockman, PRL 93, 137404 (2004) Delivering light to the nanoscale E +++ + + ++ 2.3 neff = kSPP/k0 2.2 nanoscale confinement |E| Field symmetry at tip similar to SPP mode in conical waveguide 2.1 1 µm 2.0 E z x 1.9 1 µm 1.8 k 1.7 0.0 0.2 0.4 0.6 0.8 1.0 Waveguide width (µm) Optics Express 16, 45 (2008) Ewold Verhagen, Kobus Kuipers Concentration of light in a plasmon taper: experiment λ = 1.5 μm Au Er Al2O3 Ewold Verhagen, Kobus Kuipers Concentration of light in a plasmon taper: experiment 10 µm (1490 nm) PL Intensity (counts/s) 1 µm Er3+ energy levels 60 nm apex diam. transmission exc = 1490 nm Nano Lett. 7, 334 (2007) Ewold Verhagen, Kobus Kuipers Concentration of light in a plasmon taper: experiment • Detecting upconversion luminescence from the air side of the film (excitation of SPPs at substrate side) 550 nm 660 nm E z x k Plasmonic hot-spot Theory: Stockman, PRL 93, 137404 (2004) Optics Express 16, 45 (2008) Ewold Verhagen, Kobus Kuipers FDTD Simulation: nanofocussing to < 100 nm |E|2 z = -35 nm sym asym Et, H 1 µm E + ++ ++ ++ n1 = 1 n2 = 1.74 • • • 1 µm Nanofocusing predicted: 100 x |E|2 at 10 nm from tip 3D subwavelength confinement: 1.5 µm light focused to 92 nm (/16) limited by taper apex (r=30 nm) start tip Optics Express 16, 45 (2008) Ewold Verhagen, Kobus Kuipers Coaxial MIM plasmon waveguides FIB milling of coaxial waveguides <w>=100 nm, L=485 nm 100 nm <w>=50 nm, L=485 nm 100 nm • Silica substrates with 250-500 nm thick Ag • Ring width: 50-100 nm • Two-step milling process • ~7° taper angle Nano Lett. 9, in press (2009) René de Waele, Stanley Burgos Narrow channels show negative index • Excitation above resonance, >sp • 25 nm-wide channel in Ag filled with GaP • Simulation shows negative phase velocity with respect to power flow • Negative refractive index of -2 René de Waele, Stanley Burgos Positive and negative index modes René de Waele, Stanley Burgos Plasmonic toolbox: , (), d - Engineer () Plasmonic integrated circuits Plasmonic concentrator Plasmonic multiplexer Plasmonic lens thin section Y Axis Title 1.0 0.5 0.0 -0.5 -1.0 0 200 400 600 Distance (nm) 800 1000 And much more ….. Conclusions: surface plasmon polariton Surface plasmon: bound EM wave at metal-dielectric interface Dispersion: (k) diverges near the plasma resonance: large k, small Control dispersion: control (k), losses, concentration Manipulate light at length scales below the diffraction limit