Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Metamaterials as Effective Medium Negative refraction and super-resolution Previously seen in “optical metamaterials”  Sub-wavelength dimensions with SPP  Negative index  Use of sub-wavelength components to create effective response  Super-resolution imaging Metamaterials as sub-wavelength mixture of different elements When two or more constituents are mixed at sub-wavelength dimensions Effective properties can be applied  New type of artificial dielectrics  Negative refraction in non-magnetic metamaterials  Super-resolution imaging dm dd   xx     0 0  0  0  yy 0 0  0  zz  Pendry’s artificial plasma  Motivation: metallic behavior at GHz frequencies  Problem: the dielectric response is negatively (close to) infinite  Solution: “dilute” the metal ne e 2    0m 2 p The electrons density is reduced nneff  ne  p2,eff  r 2 a2 neff e 2  0 meff * The effective electron mass is increased due to self inductance Lowering the plasma frequency, Pendry, PRL,76, 4773 (1996) Simple analysis of 1D and 2D systems a    Periodicity or inclusions much smaller than wavelength  2+1D or 1+2D (dimensions of variations)  Effective dielectric response determined by filling fraction f 1D-periodic (stratified) 2D-periodic (nano-wire aray) 3D? a  Averaging over the (fast) changing dielectric response Stratified metal-dielectric metamaterial  Two isotropic constituents with bulk permittivities  Filling fractions f for 1,1-f for 2  2 ordinary and one extra-ordinary axes (uniaxial)  2 effective permittivities a   1  2    ll Note: parallel=ordinary   For isotropic constituents effective fields Di   i Ei Eeff  Eave  fE1  (1  f ) E2 a  ll  ll  Deff  Dave  fD1  (1  f ) D2 Stratified metal-dielectric metamaterial: Parallel polarization  ll E k a Boundary conditions E1  E2  E Eeff  Eave  fE  (1  f ) E  E Deff  Dave  fD1  (1  f ) D2  f 1 E  (1  f ) 2 E   eff E  ll  f1  (1  f ) 2  ll  Stratified metal-dielectric metamaterial: Normal polarization  ll E  ll  a D1  D2  D Eeff  Eave  fE1  (1  f ) E2 Deff  Dave  fD  (1  f ) D  D Eeff  f D 1  (1  f ) D 2  D  eff 1   f 1  (1  f ) 2 Nanowire metal-dielectric metamaterial  Two isotropic constituents with bulk permittivities  Filling fractions f for 1,1-f for 2  2 ordinary and one extra-ordinary axes  2 effective permittivities a    ll   1  2    ll Note: parallel=extraordinary Nanowire metamaterial: Parallel polarization  ll E   E1  E2  E Eeff  Eave  fE  (1  f ) E  E Deff  Dave  fD1  (1  f ) D2  f 1 E  (1  f ) 2 E   eff E  ll  f1  (1  f ) 2 Nanowire metamaterial: Normal polarization polarization  ll   E • More complicated derivation • Homogenization (not simple averaging) • Assume small inclusions (<20%) • Maxwell-Garnett Theory (MGT) (metal nanowires in dielectric host)   ( x   y )   d (1  f ) m  (1  f ) d (1  f ) m  (1  f ) d Strongly anisotropic dielectric Metamaterial   0 0       0 0  0  0 0   ll    ll    ll  f m  (1  f ) d   ( x   y )   d   ll     0 0 0  (1  f ) m  (1  f ) d (1  f ) m  (1  f ) d 0  ll 0 0  0     ll  f m  (1  f ) d 1   f 1   ll  ll  (1  f ) 2 For most visible and IR wavelengths  m   d   ll  0,    0 Example: nanowire medium medium 60nm nanowire diameter Ag wires 110nm center-center wire distance 4 Al2O3 matrix 2 0  // -2 -4 -6 Effective permittivity from MG theory  // ( z )  p m  (1  p) d (1  p) m  (1  p) d   ( x   y )   d (1  p) m  (1  p) d -8 -10 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 um 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 um 30 20  10 0 -10 -20 0.3 Broad band Wave propagation in anisotropic medium   xx     0 0  0  0  yy 0 0  0  zz  Uniaxial  xx   yy Maxwell equations for time-harmonic waves    k  H  D    k  E  0 H   D   E   0 ( xx E x xˆ   yy E y yˆ   zz E x zˆ )      k  k  E  0 k  H  k02 ( xx Ex xˆ   yy E y yˆ   zz Ex zˆ)   xx k02  (k y2  k z2 )  E x  kxk y kxkz    2 2 2 kxk y  yy k0  (k x  k z ) k ykz   E y   0  2 2 2   k k k k  k  ( k  k ) E x z y z zz 0 x y z     Det(M)=0,  xx   yy  k x2  k y2 k z2  k  k   0    x  z   2 2 x 0  Wave propagation in anisotropic medium  x     0 0 0  0 x 0 0  0  z  2 2   k  k k z2 y 2 2 2 2  x 2 k x  k y  k z   x k0   k0  0    x z     Extraordinary waves (TM) Ordinary waves (TE)  E H • Electric field along y-direction • does not depend on angle • constant response of x • Electric field in x-z(y-z) plan • Depend on angle • combined response of x,z  H E Extraordinary waves in anisotropic medium  x     0 0 0  0  0  z  0 x 0 kz isotropic medium x  z 1 kx 2 z  kz kx 2 x k 2 0 k x  k z  k02 2 2 1.5 anisotropic medium For x<0 kx 2 z  kz kz x  z n  n( ) ‘Hyperbolic’ medium kz 2 x  k02 kx kx Energy flow in anisotropic medium isotropic medium kz k x  k z  k02 2 normal to the k-surface 2 1 kx 1.5 x  z ‘Indefinite’ medium anisotropic medium kz x  z kx 2 z  kz kz 2 x  k02 kx   S and k are not parallel  S Is normal to the curve! * Complete proof in “Waves and Fields in Optoelectronics” by Hermann Haus kx Refraction in anisotropic medium kz What is refraction?  x    0 0 0   0 x 0 0  0  z  kx 2   kz  2    2 c2 1 kx 1.5 Conservation of tangential momentum  x  0,  z  0 Sr , z kr , z H 02  0  x 2 0 Sr , x kr , x H 02  0  z 2 0 kz Hyperbolic air Negative refraction! kx Refraction in nanowire medium medium 4 Ag wires 2 0 Al2O3 matrix -2 -4  // -6 -8 -10 0.3 Effective permittivity from MG theory  // ( z )  p m  (1  p) d (1  p) m  (1  p) d   ( x   y )   d (1  p) m  (1  p) d 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 um 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 um 30 20 10 0  -10 -20 0.3 Broad band Negative refraction for >630nm Refraction in layered semiconductor medium •SiC •Phonon-polariton resonance at IR Negative refraction for 9>>12m  // ( x   y )  p m  (1  p) d Hyperbolic metamaterial “phase diagram” kx 2 z kz   x  0, z  0 2 x  k02  ll  f m  (1  f ) d 1   f 1   x  0, z  0 (1  f )  x  0, z  0 2  x  0, z  0 dielectric Type I Type II Ag/TiO2 multilayer system Effective medium at different regimes We choose propogation by  x  0,   z  0 kz 2   2 kx2  0   x  2   z  c X=normal (suitable for Nanowires) X=parallel Suitable for stratified medium propagation propagation   m   d  //  f m  (1  f ) d (1  f ) m  (1  f ) d   d (1  f ) m  (1  f ) d x  m   d • extreme material properties • Low-loss • epsilon near-zero • Broad-band • Diffraction management • resolution limited by periodicity • Resolution limited by loss x Conditions Normal-X direction (kx<</D) X=normal (suitable for Nanowires) propagation f  x kz 2   2 kx2  0     2   ll  c  //   m   d  0  3     d m d  0 2  m  3 d 1 2 kz   m  3 d 3   d 22 kz 2   2 kx  3  2   d 2     2   2 c c  ll   3  d 2 c  c • Low loss • Low diffraction management • moderate  values • diffraction management improves with em • Limited by periodicity •no near-0  kx Conditions for Normal Z-direction propagation x kz 2   2 kx2  0   ll  2     c  //  m  d 2 0 1  m d   0 2 m  d k z  0 For large range of kx kr m  d  //  0   d kx • Good diffraction management • near-zero  • Limited by ? Effective medium with loss…  m   m  i m propagation x m  d kz 2   2 kx2  0   ll  2     c  //   m   d  i m  2  3i m    d d 2 2 d  i m Im( kz )  Re( kz ) High loss! kz 2   2 kx2  0     2   c  ll     m   d (Long wavelengths)  //   m   d   m  3     d m d  0 2  m  3 d 3   d 2 kz 2   2 kx2       2   ll  c Very low loss at low k Moderate loss at high k Limits of indefinite medium for super-resolution  Open curve vs. close curve  No diffraction limit!  No limit at all… kx 2 z  kz 2 x  x  0,  z  0  k02 kr  2 kx2   k k z   x  k0    x  z    Is it physically valid? • Reason: approximation to homogeneous medium! • What are the practical limitations? • Can it be used for super-resolution? kx Exact solution – transfer matrix Z Unit Cell m ... d Am Cm Bm m A  A  M cell  n 1    n   Bn 1   Bn  Am1 Bm1 Dm X X=nD X=nD+d U  M (1,1)  e ikm d m V  M (1, 2)  e W  M (2,1)  e 2 2     diel km2 i  m2 kdiel cos k d  sin k d      diel d diel d  2  diel  m kdiel km    ikm d m ikm d m X  M (2, 2)  e X=(n+1)D 2 2  i  m2 kdiel    diel km2 sin  kdiel d d     2  diel  m kdiel km  2 2  i  m2 kdiel    diel km2 sin k d    diel d   2  diel  m kdiel km   ikm d m km  k02 m  kz2 , kdiel  k02 diel  kz2 2 2     diel km2 i  m2 kdiel cos k d  sin k d      diel d diel d  2  diel  m kdiel km   2 2     diel km2 1 1  m2 kdiel K x  arccos  cos  kdiel dd  cos  km d m   sin  kdiel d d  sin  km d m   D 2  diel  m kdiel km   Exact solution – transfer matrix Z Unit Cell m ... d Am Cm Bm Dm m Am1 (1) Maxwell’s equation Bm1 X X=nD X=nD+d X=(n+1)D  Am  eikm ( x mD )  Bm  eikm ( x mD )  H ( x)  Cm  eikd ( x dmetal mD )  Dm  eikd ( x dmetal mD )  ikm ( x  m 1 D )  Bm1  e km ( x  m1 D )  Am1  e mD  x  mD  d metal mD  d metal  x   m  1 D  m  1 D  x   m  1 D  d metal km  k02 m  kz2 , kdiel  k02 diel  kz2  i  A0ikm  eikm x  B0ikm  e ikm x   metal   i E ( x)   C0ikd  eikd ( x  dmetal )  D0ikd  e ikd ( x  dmetal )   diel  i A1ikm  eikm ( x  D )  B1ikm  e  km ( x  D )    metal       0  x  d metal  d metal  x  D D  x  D  d metal Exact solution – transfer matrix Z Unit Cell m ... m d Am Am1 Cm Bm (2) Boundary conditions Bm1 Dm X X=nD H (x  d X=nD+d  metal  metal )  H (x  d E( x  d  eikm dm  ik d  ikm  e m m   metal   1   ikd   diel )  E(x  d X=(n+1)D  metal  metal ) e ikm dm  ikm  e  ikm dm  metal  ) 1  metal    1   A0     B    ikd   0    diel  1 1   eikm dm   ikd   ikm  eikmdm   diel    metal eikm dm  ikm  eikmdm  metal A0  eikm dm  B0  e ikm dm  C0  D0 1 A0ikm  eikm dm  B0ikm  e ikm dm   C0ikd   D0ikd      C0  ikd     D  diel   0  1    A0   C0   B    D   0   0    diel Exact solution – transfer matrix Z Unit Cell m ... d Am Cm Bm m Am1 (3) Combining with Bloch theorem Bm1 Dm X X=nD X=nD+d X=(n+1)D   Am   Am1  M  cell        Bm   Bm1   eiK x D  Am    Am1       B B m m  1      U  eiK x D det   W   M cell  e  0 X  eiK x D  V iK x D e   U  eiK x D  Am   0   Bm   W iK x D   Am     0 X  eiK x D   Bm  V UX U  X    i 1   2  2  2 2 2     diel km2 1 1  m2 kdiel K x  arccos  cos  kdiel dd  cos  km d m   sin  kdiel d d  sin  km d m   D 2  diel  m kdiel km   Beyond effective medium: SPP coupling in M-D-M • “gap plasmon” mode • deep sub- “waveguide” • symmetric and anti-symmetric modes Metal Symmetric: k<ksingle-wg Metal Antisymmetric: k>ksingle-wg Beyond effective medium: SPP coupling in M-D-M metal dielectric • Abrupt change of the dielectric function • variations much smaller than the wavelength • Paraxial approximation not valid! •Need to start from Maxwell Equations z x • TM nature of SPPs • Calculate 3 fields     1 E  1 H  H  ,  E   c t c t Eigenmode problem: • Eigen vectors  EM field • Eigen values  Propagation constants ~ Ex ( x, z)  Ex ( x)eiz ~ E z ( x , z )  E z ( x ) e  i z ~ H y ( x, z )  H y ( x)eiz Hamiltonian-like operator:   ˆ M ( x) ( x)   ( x)  ~ ~   ( H y , E x )T 2   0  k 1 0 ˆ  M ( x)   ˆ k 0  H ( x) 0   1  Hˆ  ( )  k02 x  x Plasmonic Bloch modes Kx=/D Kx=0 1 1 1 Magnetic Tangential Electric Magnetic Tangential Electric -1 0.97 -1 Ag=20nm Air=30 nm =1.5m kz k0 k x / k0 Metamaterials at low spatial frequencies The homogeneous medium perspective D    k  D Averaged dielectric response Can be <0  // ( z )  p m  (1  p) d (1  p) m  (1  p) d   ( x   y )   d (1  p) m  (1  p) d kx kz  2   2 z x c 2 2 Hyperbolic dispersion! Metamaterials at low spatial frequencies The homogeneous medium perspective D    k  D Averaged dielectric response Can be <0  // ( z )  p m  (1  p) d (1  p) m  (1  p) d   ( x   y )   d (1  p) m  (1  p) d kx kz    2 z x c 2 2 3 2.5 2 1.5 1 2 Hyperbolic dispersion! 0.5 0 0.5 1 1.5 2 2.5 3 3.5 Use of anisotropic medium for far-field super resolution Conventional lens  Superlens can image near- to near-field Superlens   Need conversion beyond diffraction limit  Multilayers/effective medium?  Can only replicate sub-diffraction image by diffraction suppression Solution: curve the space The Hyperlens X  Z r dm dd • Metal-dielectric sub-wavelength layers • No diffraction in Cartesian space • object dimension at input a • D is constant D  a r •Arc at output kr 2   k 2 r     ll  0 R A  RD  a r Magnification ratio determines the resolution limit.  k0 2 Optical hyperlens view by angular momentum • Span plane waves in angular momentum base (Bessel func.) e ikx   m im i J ( kr ) e  m m   • resolution detrrmined by mode order • penetration of high-order modes to the center is diffraction limited • hyperbolic dispersion lifts the diffraction limit •Increased overlap with sub-wavelength object