Download Metamaterials as Effective Medium

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Metamaterials as Effective Medium
Negative refraction and super-resolution
Previously seen in “optical metamaterials”

Sub-wavelength dimensions with SPP

Negative index

Use of sub-wavelength components to create effective response

Super-resolution imaging
Metamaterials as sub-wavelength mixture of different elements
When two or more constituents are mixed at sub-wavelength dimensions
Effective properties can be applied

New type of artificial dielectrics

Negative refraction in non-magnetic metamaterials

Super-resolution imaging
dm dd
  xx


  0 0
 0

0
 yy
0
0

0
 zz 
Pendry’s artificial plasma

Motivation: metallic behavior at GHz frequencies

Problem: the dielectric response is negatively (close to) infinite

Solution: “dilute” the metal
ne e 2
 
 0m
2
p
The electrons density is reduced
nneff  ne
 p2,eff 
r 2
a2
neff e 2
 0 meff
* The effective electron mass is increased due to self inductance
Lowering the plasma frequency, Pendry, PRL,76, 4773 (1996)
Simple analysis of 1D and 2D systems
a  

Periodicity or inclusions much smaller than wavelength

2+1D or 1+2D (dimensions of variations)

Effective dielectric response determined by filling fraction f
1D-periodic (stratified)
2D-periodic (nano-wire aray)
3D?
a

Averaging over the (fast) changing dielectric response
Stratified metal-dielectric metamaterial

Two isotropic constituents with bulk permittivities

Filling fractions f for 1,1-f for 2

2 ordinary and one extra-ordinary axes (uniaxial)

2 effective permittivities
a  
1  2
   ll
Note: parallel=ordinary


For isotropic constituents
effective fields
Di   i Ei
Eeff  Eave  fE1  (1  f ) E2
a
 ll
 ll

Deff  Dave  fD1  (1  f ) D2
Stratified metal-dielectric metamaterial: Parallel polarization
 ll
E
k
a
Boundary conditions
E1  E2  E
Eeff  Eave  fE  (1  f ) E  E
Deff  Dave  fD1  (1  f ) D2  f 1 E  (1  f ) 2 E   eff E
 ll  f1  (1  f ) 2
 ll

Stratified metal-dielectric metamaterial: Normal polarization
 ll
E
 ll

a
D1  D2  D
Eeff  Eave  fE1  (1  f ) E2
Deff  Dave  fD  (1  f ) D  D
Eeff  f
D
1
 (1  f )
D
2

D
 eff
1


f
1

(1  f )
2
Nanowire metal-dielectric metamaterial

Two isotropic constituents with bulk permittivities

Filling fractions f for 1,1-f for 2

2 ordinary and one extra-ordinary axes

2 effective permittivities
a  
 ll


1  2
   ll
Note: parallel=extraordinary
Nanowire metamaterial: Parallel polarization
 ll
E


E1  E2  E
Eeff  Eave  fE  (1  f ) E  E
Deff  Dave  fD1  (1  f ) D2  f 1 E  (1  f ) 2 E   eff E
 ll  f1  (1  f ) 2
Nanowire metamaterial: Normal polarization polarization
 ll


E
• More complicated derivation
• Homogenization (not simple averaging)
• Assume small inclusions (<20%)
• Maxwell-Garnett Theory (MGT)
(metal nanowires in dielectric host)
  ( x   y )   d
(1  f ) m  (1  f ) d
(1  f ) m  (1  f ) d
Strongly anisotropic dielectric Metamaterial
  0 0 



  0 0  0 
0 0  
ll 

 ll


 ll  f m  (1  f ) d
  ( x   y )   d
  ll


  0 0
0

(1  f ) m  (1  f ) d
(1  f ) m  (1  f ) d
0
 ll
0
0

0
  
 ll  f m  (1  f ) d
1


f
1

 ll
 ll

(1  f )
2
For most visible and IR wavelengths  m   d
  ll  0,    0
Example: nanowire medium medium
60nm nanowire diameter
Ag wires
110nm center-center wire distance
4
Al2O3
matrix
2
0
 //
-2
-4
-6
Effective permittivity
from MG theory
 // ( z )  p m  (1  p) d
(1  p) m  (1  p) d
  ( x   y )   d
(1  p) m  (1  p) d
-8
-10
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
um
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
um
30
20

10
0
-10
-20
0.3
Broad band
Wave propagation in anisotropic medium
  xx


  0 0
 0

0
 yy
0
0

0
 zz 
Uniaxial  xx   yy
Maxwell equations for time-harmonic waves
 

k  H  D
 

k  E  0 H
 
D   E   0 ( xx E x xˆ   yy E y yˆ   zz E x zˆ )
  
 
k  k  E  0 k  H  k02 ( xx Ex xˆ   yy E y yˆ   zz Ex zˆ)
  xx k02  (k y2  k z2 )
 E x 
kxk y
kxkz

 
2
2
2
kxk y
 yy k0  (k x  k z )
k ykz

 E y   0

2
2
2 

k
k
k
k

k

(
k

k
)
E
x
z
y
z
zz
0
x
y
z




Det(M)=0,  xx   yy
 k x2  k y2 k z2 
k  k 
 0
 
 x 
z


2
2
x 0

Wave propagation in anisotropic medium
 x


  0 0
0

0
x
0
0

0
 z 
2
2


k

k
k z2
y
2
2
2
2  x
2
k x  k y  k z   x k0
  k0  0
 

x
z




Extraordinary waves (TM)
Ordinary waves (TE)

E
H
• Electric field along y-direction
• does not depend on angle
• constant response of x
• Electric field in x-z(y-z) plan
• Depend on angle
• combined response of x,z

H
E
Extraordinary waves in anisotropic medium
 x


  0 0
0

0

0
 z 
0
x
0
kz
isotropic medium
x  z
1
kx
2
z

kz
kx
2
x
k
2
0
k x  k z  k02
2
2
1.5
anisotropic medium
For x<0
kx
2
z

kz
kz
x  z
n  n( )
‘Hyperbolic’ medium
kz
2
x
 k02
kx
kx
Energy flow in anisotropic medium
isotropic medium
kz
k x  k z  k02
2
normal to the k-surface
2
1
kx
1.5
x  z
‘Indefinite’ medium
anisotropic medium
kz
x  z
kx
2
z

kz
kz
2
x
 k02
kx


S and k are not parallel

S Is normal to the curve!
* Complete proof in “Waves and Fields in Optoelectronics” by Hermann Haus
kx
Refraction in anisotropic medium
kz
What is refraction?
 x

  0 0
0


0
x
0
0

0
 z 
kx
2


kz

2



2
c2
1
kx
1.5
Conservation of tangential momentum
 x  0,  z  0
Sr , z
kr , z H 02

0
 x 2 0
Sr , x
kr , x H 02

0
 z 2 0
kz
Hyperbolic
air
Negative refraction!
kx
Refraction in nanowire medium medium
4
Ag wires
2
0
Al2O3
matrix
-2
-4
 //
-6
-8
-10
0.3
Effective permittivity
from MG theory
 // ( z )  p m  (1  p) d
(1  p) m  (1  p) d
  ( x   y )   d
(1  p) m  (1  p) d
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
um
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
um
30
20
10
0

-10
-20
0.3
Broad band
Negative refraction for >630nm
Refraction in layered semiconductor medium
•SiC
•Phonon-polariton resonance at IR
Negative refraction for 9>>12m
 // ( x   y )  p m  (1  p) d
Hyperbolic metamaterial “phase diagram”
kx
2
z
kz

 x  0, z  0
2
x
 k02
 ll  f m  (1  f ) d
1


f
1

 x  0, z  0
(1  f )
 x  0, z  0
2
 x  0, z  0
dielectric
Type I
Type II
Ag/TiO2 multilayer system
Effective medium at different regimes
We choose propogation by
 x  0,   z  0
kz
2
  2 kx2 
0
  x  2 
 z 
c
X=normal
(suitable for Nanowires)
X=parallel
Suitable for stratified medium
propagation
propagation
  m   d
 //  f m  (1  f ) d
(1  f ) m  (1  f ) d
  d
(1  f ) m  (1  f ) d
x
 m   d
• extreme material properties
• Low-loss
• epsilon near-zero
• Broad-band
• Diffraction management
• resolution limited by periodicity
• Resolution limited by loss
x
Conditions Normal-X direction (kx<</D)
X=normal
(suitable for Nanowires)
propagation
f 
x
kz
2
  2 kx2 
0
    2 
 ll 
c
 //   m   d  0
 3  
  d m d  0
2  m  3 d
1
2
kz
  m  3 d
3
  d
22
kz
2
  2 kx  3  2
  d 2
    2 
 2 c
c

ll 

3 
d
2
c

c
• Low loss
• Low diffraction management
• moderate  values
• diffraction management improves with em
• Limited by periodicity
•no near-0 
kx
Conditions for Normal Z-direction
propagation
x
kz
2
  2 kx2 
0
  ll  2 
  
c
 // 
m  d
2
0
1  m d
 
0
2 m  d
k z  0 For large range of kx
kr
m  d
 //  0
  d
kx
• Good diffraction management
• near-zero 
• Limited by ?
Effective medium with loss…
 m   m  i m
propagation
x
m  d
kz
2
  2 kx2 
0
  ll  2 
  
c
 //   m   d  i m
 2  3i m
   d d
2 2 d  i m
Im( kz )  Re( kz )
High loss!
kz
2
  2 kx2 
0
    2 

c

ll 

  m   d
(Long wavelengths)
 //   m   d   m
 3  
  d m d  0
2  m  3 d
3
  d
2
kz
2
  2 kx2 

    2 
 ll 
c
Very low loss at low k
Moderate loss at high k
Limits of indefinite medium for super-resolution

Open curve vs. close curve

No diffraction limit!

No limit at all…
kx
2
z

kz
2
x
 x  0,  z  0
 k02
kr
 2 kx2 
 k
k z   x  k0 


x

z 


Is it physically valid?
• Reason: approximation to homogeneous medium!
• What are the practical limitations?
• Can it be used for super-resolution?
kx
Exact solution – transfer matrix
Z
Unit Cell
m
...
d
Am
Cm
Bm
m
A  A 
M cell  n 1    n 
 Bn 1   Bn 
Am1
Bm1
Dm
X
X=nD
X=nD+d
U  M (1,1)  e
ikm d m
V  M (1, 2)  e
W  M (2,1)  e
2
2


  diel
km2
i  m2 kdiel
cos
k
d

sin
k
d





diel d
diel d 
2  diel  m kdiel km


 ikm d m
ikm d m
X  M (2, 2)  e
X=(n+1)D
2
2
 i  m2 kdiel

  diel
km2
sin  kdiel d d  

 2  diel  m kdiel km

2
2
 i  m2 kdiel

  diel
km2
sin
k
d



diel d 
 2  diel  m kdiel km

 ikm d m
km  k02 m  kz2 , kdiel  k02 diel  kz2
2
2


  diel
km2
i  m2 kdiel
cos
k
d

sin
k
d





diel d
diel d 
2  diel  m kdiel km


2
2


  diel
km2
1
1  m2 kdiel
K x  arccos  cos  kdiel dd  cos  km d m  
sin  kdiel d d  sin  km d m  
D
2  diel  m kdiel km


Exact solution – transfer matrix
Z
Unit Cell
m
...
d
Am
Cm
Bm
Dm
m
Am1
(1) Maxwell’s equation
Bm1
X
X=nD
X=nD+d
X=(n+1)D

Am  eikm ( x mD )  Bm  eikm ( x mD )

H ( x)  Cm  eikd ( x dmetal mD )  Dm  eikd ( x dmetal mD )

ikm ( x  m 1 D )
 Bm1  e km ( x  m1 D )
 Am1  e
mD  x  mD  d metal
mD  d metal  x   m  1 D
 m  1 D  x   m  1 D  d metal
km  k02 m  kz2 , kdiel  k02 diel  kz2

i

A0ikm  eikm x  B0ikm  e ikm x

 metal


i
E ( x)  
C0ikd  eikd ( x  dmetal )  D0ikd  e ikd ( x  dmetal )
  diel

i
A1ikm  eikm ( x  D )  B1ikm  e  km ( x  D )
 
 metal






0  x  d metal

d metal  x  D
D  x  D  d metal
Exact solution – transfer matrix
Z
Unit Cell
m
...
m
d
Am
Am1
Cm
Bm
(2) Boundary conditions
Bm1
Dm
X
X=nD
H (x  d
X=nD+d

metal

metal
)  H (x  d
E( x  d
 eikm dm

ik d
 ikm  e m m
 
metal

 1

 ikd

 diel
)  E(x  d
X=(n+1)D

metal

metal
)
e ikm dm

ikm  e  ikm dm
 metal

)
1
 metal


 1
  A0  
  B    ikd
  0    diel

1
1   eikm dm
 
ikd   ikm  eikmdm

 diel    metal
eikm dm

ikm  eikmdm
 metal
A0  eikm dm  B0  e ikm dm  C0  D0
1
A0ikm  eikm dm  B0ikm  e ikm dm 
 C0ikd   D0ikd 


  C0 
ikd   

D
 diel   0 
1

  A0   C0 
 B    D 
 0   0 

 diel
Exact solution – transfer matrix
Z
Unit Cell
m
...
d
Am
Cm
Bm
m
Am1
(3) Combining with Bloch theorem
Bm1
Dm
X
X=nD
X=nD+d
X=(n+1)D

 Am   Am1 
M
 cell    


 Bm   Bm1 

eiK x D  Am    Am1 
  


B
B
m
m

1





U  eiK x D
det 
 W

 M cell  e

0
X  eiK x D 
V
iK x D
e

 U  eiK x D
 Am 
 0 
 Bm 
 W
iK x D
  Am 
   0
X  eiK x D   Bm 
V
UX
U  X 

 i 1 

2
 2 
2
2
2


  diel
km2
1
1  m2 kdiel
K x  arccos  cos  kdiel dd  cos  km d m  
sin  kdiel d d  sin  km d m  
D
2  diel  m kdiel km


Beyond effective medium: SPP coupling in M-D-M
• “gap plasmon” mode
• deep sub- “waveguide”
• symmetric and anti-symmetric modes
Metal
Symmetric: k<ksingle-wg
Metal
Antisymmetric: k>ksingle-wg
Beyond effective medium: SPP coupling in M-D-M
metal
dielectric
• Abrupt change of the dielectric function
• variations much smaller than the wavelength
• Paraxial approximation not valid!
•Need to start from Maxwell Equations
z
x
• TM nature of SPPs
• Calculate 3 fields 


 1 E

1 H
 H 
,  E  
c t
c t
Eigenmode problem:
• Eigen vectors  EM field
• Eigen values  Propagation constants
~
Ex ( x, z)  Ex ( x)eiz
~
E z ( x , z )  E z ( x ) e  i z
~
H y ( x, z )  H y ( x)eiz
Hamiltonian-like operator:


ˆ
M ( x) ( x)   ( x)

~ ~
  ( H y , E x )T
2


0

k
1
0
ˆ

M ( x)  
ˆ
k 0  H ( x) 0 
 1 
Hˆ  (
)  k02
x  x
Plasmonic Bloch modes
Kx=/D
Kx=0
1
1
1
Magnetic
Tangential
Electric
Magnetic
Tangential
Electric
-1
0.97
-1
Ag=20nm Air=30 nm =1.5m
kz
k0
k x / k0
Metamaterials at low spatial frequencies
The homogeneous medium perspective
D  

k 
D
Averaged dielectric response
Can be <0
 // ( z )  p m  (1  p) d
(1  p) m  (1  p) d
  ( x   y )   d
(1  p) m  (1  p) d
kx kz  2

 2
z x c
2
2
Hyperbolic dispersion!
Metamaterials at low spatial frequencies
The homogeneous medium perspective
D  

k 
D
Averaged dielectric response
Can be <0
 // ( z )  p m  (1  p) d
(1  p) m  (1  p) d
  ( x   y )   d
(1  p) m  (1  p) d
kx kz 

 2
z x c
2
2
3
2.5
2
1.5
1
2
Hyperbolic dispersion!
0.5
0
0.5
1
1.5
2
2.5
3
3.5
Use of anisotropic medium for far-field super resolution
Conventional lens

Superlens can image near- to near-field
Superlens


Need conversion beyond diffraction limit

Multilayers/effective medium?

Can only replicate sub-diffraction image by diffraction suppression
Solution: curve the space
The Hyperlens
X 
Z r
dm dd
• Metal-dielectric sub-wavelength layers
• No diffraction in Cartesian space
• object dimension at input a
• D is constant D  a
r
•Arc at output
kr 2


k 2
r
    ll  0
R
A  RD  a
r
Magnification ratio determines the resolution limit.
 k0 2
Optical hyperlens view by angular momentum
• Span plane waves in angular momentum base (Bessel func.)
e
ikx


m
im
i
J
(
kr
)
e
 m
m  
• resolution detrrmined by mode order
• penetration of high-order modes to the center is diffraction limited
• hyperbolic dispersion lifts the diffraction limit
•Increased overlap with sub-wavelength object