Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
+ Chapter 2: Modeling Distributions of Data Section 2.1 Describing Location in a Distribution The Practice of Statistics, 4th edition - For AP* STARNES, YATES, MOORE + Chapter 2 Modeling Distributions of Data 2.1 Describing Location in a Distribution 2.2 Normal Distributions + Section 2.1 Describing Location in a Distribution Learning Objectives After this section, you should be able to… MEASURE position using percentiles INTERPRET cumulative relative frequency graphs MEASURE position using z-scores TRANSFORM data DEFINE and DESCRIBE density curves One way to describe the location of a value in a distribution is to tell what percent of observations are less than it. Definition: The pth percentile of a distribution is the value with p percent of the observations less than it. Example, p. 85 Jenny earned a score of 86 on her test. How did she perform relative to the rest of the class? 6 7 7 2334 7 5777899 8 00123334 8 569 9 03 Her score was greater than 21 of the 25 observations. Since 21 of the 25, or 84%, of the scores are below hers, Jenny is at the 84th percentile in the class’s test score distribution. Describing Location in a Distribution Position: Percentiles + Measuring Example: Wins in Major League Baseball The stemplot below shows the number of wins for each of the 30 Major League Baseball teams in 2009. + Calculate and interpret the percentiles for the Colorado Rockies who had 92 wins, the New York Yankees who had 103 wins, and the Cleveland Indians who had 65 wins. Example Key: 5|9 represents a team with 59 wins. + Relative Frequency Cumulative Relative Frequency adds the counts in the frequency column for the current class and all previous classes. Example: Let’s look at the frequency table for the ages of the 1st 44 US presidents when they were inaugurated. Age Frequency Relative Frequency Cumulative Frequency Cumulative Rel. Frequency 40 – 44 2 0.045 2 0.045 45 – 49 7 0.159 9 0.205 50 – 54 13 0.295 22 0.500 55 – 59 12 0.273 34 0.773 60 – 64 7 0.159 41 0.932 65 – 69 3 0.068 44 1.000 Total 44 1.00 or 100% Describing Location in a Distribution Cumulative A cumulative relative frequency graph displays the cumulative relative frequency of each class of a frequency distribution. Age of First 44 Presidents When They Were Inaugurated Age Frequency Relative frequency Cumulative frequency Cumulative relative frequency 4044 2 2/44 = 4.5% 2 2/44 = 4.5% 4549 7 7/44 = 15.9% 9 9/44 = 20.5% 5054 13 13/44 = 29.5% 22 22/44 = 50.0% 5559 12 12/44 = 34% 34 34/44 = 77.3% 6064 7 7/44 = 15.9% 41 41/44 = 93.2% 6569 3 3/44 = 6.8% 44 44/44 = 100% + Relative Frequency Graphs Describing Location in a Distribution Cumulative Interpreting Cumulative Relative Frequency Graphs Was Barack Obama, who was inaugurated at age 47, unusually young? Estimate and interpret the 65th percentile of the distribution 65 11 47 58 Describing Location in a Distribution Use the graph from page 88 to answer the following questions. + Here is a cumulative relative frequency graph showing the distribution of median household incomes for the 50 states and the District of Columbia. The point (50, 0.49) means that 49% of the states had a median household income of less than $50,000. a) California, with a median household income of $57,445, is at what percentile? Interpret this value. b) What is the 25th percentile for this distribution? What is another name for this value? + Example: State Median Household Incomes Example A z-score is a value that tells ushow many standard deviations from the mean an observation falls, and in what direction. Definition: If x is an observation from a distribution that has known mean and standard deviation, the standardized value of x is: x - mean z= standard deviation A standardized value is often called a z-score. Jenny earned a score of 86 on her test. The class mean is 80 and the standard deviation is 6.07. What is her standardized score? x - mean 86 - 80 z= = = 0.99 standard deviation 6.07 Describing Location in a Distribution Position: z-Scores + Measuring + z-scores for Comparison We can use z-scores to compare the position of individuals in different distributions. The single-season home run record for major league baseball has been set just three times since Babe Ruth hit 60 home runs in 1927. Roger Maris hit 61 in 1961, Mark McGwire hit 70 in 1998 and Barry Bonds hit 73 in 2001. In an absolute sense, Barry Bonds had the best performance of these four players, since he hit the most home runs in a single season. However, in a relative sense this may not be true. To make a fair comparison, we should see how these performances rate relative to others hitters during the same year. Calculate the standardized score for each player and compare. 86 - 80 zstats = 6.07 82 - 76 = 4 zchem zstats = 0.99 zchem = 1.5 Describing Location in a Distribution Using Ruth: 60 – 7.2 = 5.44 McGwire: 70 – 20.7 = 3.87 9.7 Maris: 61 – 18.8 = 3.16 13.4 12.7 Bonds: 73 – 21.4 = 3.91 13.2 Although all 4 performances were outstanding, Babe Ruth can still lay claim to being the single-season home run champ, relatively speaking. + The single-season home run record for major league baseball has been set just three times since Babe Ruth hit 60 home runs in 1927. Roger Maris hit 61 in 1961, Mark McGwire hit 70 in 1998 and Barry Bonds hit 73 in 2001. In an absolute sense, Barry Bonds had the best performance of these four players, since he hit the most home runs in a single season. However, in a relative sense this may not be true. To make a fair comparison, we should see how these performances rate relative to others hitters during the same year. Calculate the standardized score for each player and compare. Example Transforming converts the original observations from the original units of measurements to another scale. Transformations can affect the shape, center, and spread of a distribution. Effect of Adding (or Subracting) a Constant Adding the same number a (either positive, zero, or negative) to each observation: •adds a to measures of center and location (mean, median, quartiles, percentiles), but •Does not change the shape of the distribution or measures of spread (range, IQR, standard deviation). + Data Describing Location in a Distribution Transforming Suppose that the teacher is nice and wants to add 5 points to each test score. How would this affect the shape, center and spread of the data? + Example: Here is a graph and table of summary statistics for a sample of 30 test scores. The maximum possible score on the test was a 50. Example + Example The measures of center and position all increased by 5. However, the shape and spread of the distribution did not change. Effect of Multiplying (or Dividing) by a Constant Multiplying (or dividing) each observation by the same number b (positive, negative, or zero): •multiplies (divides) measures of center and location by b •multiplies (divides) measures of spread by |b|, but •does not change the shape of the distribution Example: Suppose that the teacher wants to convert each test score to percents. Since the test was out of 50 points, he should just multiply each score by 2 to make them out of 100. How would this change the shape, center and spread of the data? The measures of center, location and spread will all double. However, even though the distribution is more spread out, the shape will not change!!! + Data Describing Location in a Distribution Transforming In Chapter 1, we developed a kit of graphical and numerical tools for describing distributions. Now, we’ll add one more step to the strategy. So far our strategy for exploring data is : 1. Graph the data to get an idea of the overall pattern 2. Calculate an appropriate numerical summary to describe the center and spread of the distribution. Sometimes the overall pattern of a large number of observations is so regular, that we can describe it by a smooth curve, called a density curve. + Curves Describing Location in a Distribution Density Curve A density curve is a curve that •is always on or above the horizontal axis, and •has area exactly 1 underneath it. A density curve describes the overall pattern of a distribution. The area under the curve and above any interval of values on the horizontal axis is the proportion of all observations that fall in that interval. The overall pattern of this histogram of the scores of all 947 seventh-grade students in Gary, Indiana, on the vocabulary part of the Iowa Test of Basic Skills (ITBS) can be described by a smooth curve drawn through the tops of the bars. Describing Location in a Distribution Definition: + Density Here’s the idea behind density curves: + A density curve has the following properties: The area under the density curve and above any range of values is the proportion of all observations that fall in that range. + + No real set of data is described by a density curve. It is simply an approximation that is easy to use and accurate enough for practical use. Describing Density Curves The median of the density curve is the “equal-areas” point. The mean of the density curve is the “balance” point. Density Curves NOTE: + Section 2.1 Describing Location in a Distribution Summary In this section, we learned that… There are two ways of describing an individual’s location within a distribution – the percentile and z-score. A cumulative relative frequency graph allows us to examine location within a distribution. It is common to transform data, especially when changing units of measurement. Transforming data can affect the shape, center, and spread of a distribution. We can sometimes describe the overall pattern of a distribution by a density curve (an idealized description of a distribution that smooths out the irregularities in the actual data). + Looking Ahead… In the next Section… We’ll learn about one particularly important class of density curves – the Normal Distributions We’ll learn The 68-95-99.7 Rule The Standard Normal Distribution Normal Distribution Calculations, and Assessing Normality