Download Additional Muscular System ppt

Document related concepts
no text concepts found
Transcript
Essentials of Human Anatomy & Physiology
Elaine N. Marieb
Seventh Edition
Chapter 6
The Muscular System
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
The Muscular System
 Muscles are responsible for all types of
body movement – they contract or
shorten and are the machine of the
body
 Three basic muscle types are found in
the body
 Skeletal muscle
 Cardiac muscle
 Smooth muscle
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.1
• Skeletal - Attached to bones or skin
- Voluntary
- Striated
Cardiac
Smooth
- Heart Muscle
- Involuntary
- Striated
- Organ walls…
- Involuntary
- Non-striated
Characteristics of Muscles
 Muscle cells are elongated
(muscle cell = muscle fiber)
 Contraction of muscles is due to the
movement of microfilaments
 All muscles share some terminology
 Prefix myo refers to muscle
 Prefix mys refers to muscle
 Prefix sarco refers to flesh
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.2
Skeletal Muscle Characteristics
 Most are attached by tendons to bones
 Cells are multinucleate
 Striated – have visible banding
 Voluntary – subject to conscious control
 Cells are surrounded and bundled by
connective tissue = great force, but tires
easily
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.3
Connective Tissue Wrappings of
Skeletal Muscle
 Endomysium –
around single
muscle fiber
 Perimysium –
around a
fascicle
(bundle) of
fibers
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.1
Slide 6.4a
Connective Tissue Wrappings of
Skeletal Muscle
 Epimysium –
covers the
entire skeletal
muscle
 Fascia – on the
outside of the
epimysium
Figure 6.1
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.4b
Skeletal Muscle Attachments
 Epimysium blends into a connective
tissue attachment
 Tendon – cord-like structure
 Aponeuroses – sheet-like structure
 Sites of muscle attachment
 Bones
 Cartilages
 Connective tissue coverings
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.5
Smooth Muscle Characteristics
 Has no striations
 Spindle-shaped
cells
 Single nucleus
 Involuntary – no
conscious control
 Found mainly in
the walls of hollow
organs
 Slow, sustained
and tireless
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.2a
Slide 6.6
Cardiac Muscle Characteristics
 Has striations
 Usually has a
single nucleus
 Joined to another
muscle cell at an
intercalated disc
 Involuntary
 Found only in the
heart
 Steady pace!
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.2b
Slide 6.7
Function of Muscles
 Produce movement
 Maintain posture
 Stabilize joints
 Generate heat
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.8
Microscopic Anatomy of Skeletal
Muscle
 Cells are multinucleate
 Nuclei are just beneath the sarcolemma
Figure 6.3a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.9a
Microscopic Anatomy of Skeletal
Muscle
 Sarcolemma – specialized plasma
membrane
 Sarcoplasmic reticulum – specialized
smooth endoplasmic reticulum
Figure 6.3a
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.9b
Microscopic Anatomy of Skeletal
Muscle
 Myofibril
 Bundles of myofilaments
 Myofibrils are aligned to give distrinct bands
 I band =
light band
 A band =
dark band
Figure 6.3b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Microscopic Anatomy of Skeletal
Muscle
 Sarcomere
 Contractile unit of a muscle fiber
Figure 6.3b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Microscopic Anatomy of Skeletal
Muscle
 Organization of the sarcomere
 Thick filaments = myosin filaments
 Composed of the protein myosin
 Has ATPase enzymes
Figure 6.3c
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Microscopic Anatomy of Skeletal
Muscle
 Organization of the sarcomere
 Thin filaments = actin filaments
 Composed of the protein actin
Figure 6.3c
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Microscopic Anatomy of Skeletal
Muscle
 Myosin filaments have heads
(extensions, or cross bridges)
 Myosin and
actin overlap
somewhat
Figure 6.3d
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Properties of Skeletal Muscle
Activity (single cells or fibers)
 Irritability – ability to receive and
respond to a stimulus
 Contractility – ability to shorten when an
adequate stimulus is received
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.13
Nerve Stimulus to Muscles
 Skeletal
muscles must
be stimulated
by a nerve to
contract (motor
neruron)
 Motor unit
 One neuron
 Muscle cells
stimulated by
that neuron
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.4a
Slide 6.14
Nerve Stimulus to Muscles
 Neuromuscular
junctions –
association site
of nerve and
muscle
Figure 6.5b
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Nerve Stimulus to Muscles
 Synaptic cleft –
gap between
nerve and
muscle
 Nerve and
muscle do not
make contact
 Area between
nerve and muscle
is filled with
interstitial fluid
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.5b
Slide
Transmission of Nerve Impulse to
Muscle
 Neurotransmitter – chemical released
by nerve upon arrival of nerve impulse
 The neurotransmitter for skeletal muscle is
acetylcholine
 Neurotransmitter attaches to receptors
on the sarcolemma
 Sarcolemma becomes permeable to
sodium (Na+)
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Transmission of Nerve Impulse to
Muscle
 Sodium rushing into the cell generates
an action potential
 Once started, muscle contraction
cannot be stopped
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
The Sliding Filament Theory of
Muscle Contraction
 Activation by nerve
causes myosin
heads
(crossbridges) to
attach to binding
sites on the thin
filament
 Myosin heads then
bind to the next site
of the thin filament
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.7
Slide
The Sliding Filament Theory of
Muscle Contraction
 This continued
action causes a
sliding of the myosin
along the actin
 The result is that the
muscle is shortened
(contracted)
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.7
Slide
The Sliding Filament Theory
Figure 6.8
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.18
Contraction of a Skeletal Muscle
 Muscle fiber contraction is “all or none”
 Within a skeletal muscle, not all fibers
may be stimulated during the same
interval
 Different combinations of muscle fiber
contractions may give differing
responses
 Graded responses – different degrees
of skeletal muscle shortening, rapid
stimulus = constant contraction or
tetanus
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.19
Muscle Response to Strong Stimuli
 Muscle force depends upon the number
of fibers stimulated
 More fibers contracting results in
greater muscle tension
 Muscles can continue to contract unless
they run out of energy
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.22
Energy for Muscle Contraction
 Initially, muscles used stored ATP for
energy
 Bonds of ATP are broken to release energy
 Only 4-6 seconds worth of ATP is stored by
muscles
 After this initial time, other pathways
must be utilized to produce ATP
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.23
Energy for Muscle Contraction
 Direct phosphorylation
 Muscle cells contain creatine
phosphate (CP)
 CP is a high-energy
molecule
 After ATP is depleted, ADP is
left
 CP transfers energy to ADP,
to regenerate ATP
 CP supplies are exhausted in
about 20 seconds
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.10a
Slide 6.24
Energy for Muscle Contraction
 Anaerobic glycolysis
 Reaction that breaks
down glucose without
oxygen
 Glucose is broken down
to pyruvic acid to
produce some ATP
 Pyruvic acid is
converted to lactic acid
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.10b
Slide
Energy for Muscle Contraction
 Anaerobic glycolysis
(continued)
 This reaction is not as
efficient, but is fast
 Huge amounts of
glucose are needed
 Lactic acid produces
muscle fatigue
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.10b
Slide
Energy for Muscle Contraction
 Aerobic Respiration
 Series of metabolic
pathways that occur in
the mitochondria
 Glucose is broken down
to carbon dioxide and
water, releasing energy
 This is a slower reaction
that requires continuous
oxygen
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Figure 6.10c
Slide 6.25
Muscle Fatigue and Oxygen Debt
 When a muscle is fatigued, it is unable to
contract
 The common reason for muscle fatigue is
oxygen debt
 Oxygen must be “repaid” to tissue to remove
oxygen debt
 Oxygen is required to get rid of accumulated
lactic acid
 Increasing acidity (from lactic acid) and lack
of ATP causes the muscle to contract less
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.27
Types of Muscle Contractions
 Isotonic contractions
 Myofilaments are able to slide past each
other during contractions
 The muscle shortens
 Isometric contractions
 Tension in the muscles increases
 The muscle is unable to shorten
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.28
Muscle Tone
 Some fibers are contracted even in a
relaxed muscle
 Different fibers contract at different
times to provide muscle tone
 The process of stimulating various
fibers is under involuntary control
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.29
Muscles and Body Movements
 Movement is
attained due to
a muscle
moving an
attached bone
Figure 6.12
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Muscles and Body Movements
 Muscles are
attached to at
least two points
 Origin –
attachment to the
stationary bone
 Insertion –
attachment to the
movable bone
Figure 6.12
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Effects of Exercise on Muscle
 Results of increased muscle use
 Increase in muscle size
 Increase in muscle strength
 Increase in muscle efficiency
 Muscle becomes more fatigue resistant
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.31
• Flexion – Decreases the angle of the joint and brings 2
bones closer together. Ex. Bending knee,elbow
• Extension – opposite of flexion, increases angle between 2
bones ex. Straightening knee, elbow
• Rotation – movement of a bone around longitudinal axis
ex. Shaking head “no”
• Abduction – moving a limb away from the midline of the
body, fanning movement of fingers, toes
• Adduction – movement of a limb towards the body
midline, opposite of abduction
• Circumduction – combination of flexion, extension,
abduction and adduction. Proximal end of limb is
stationary, distal end moves in a circle ex. Shoulder
Types of Ordinary Body
Movements website
 Flexion – decreases angle of joint and
brings two bones closer together
 Extension- opposite of flexion
 Rotation- movement of a bone in
longitudinal axis, shaking head “no”
 Abduction/Adduction (see slides)
 Circumduction (see slides)
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.32
Muscle Action
• Plantar Flexion/Dorsiflexion-gastrocnemius
and tibialis anterior
• Pronation/Supination- face down/up…carry
the “soup” to remember supination
Body Movements
Figure 6.13
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.33
Left:
Abduction –
moving the
leg away
from the
midline
Right:
Circumduction: coneshaped movement,
proximal end doesn’t
move, while distal end
moves in a circle.
Above –
Adductionmoving
toward the
midline
Types of Muscles
 Prime mover – muscle with the major
responsibility for a certain movement
 Antagonist – muscle that opposes or
reverses a prime mover
 Synergist – muscle that aids a prime
mover in a movement and helps prevent
rotation
 Fixators-specialized synergists. Hold
bone still and stabilize origin of prime
mover
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.35
Naming Skeletal Muscles
•
•
•
•
•
•
•
Direction of Muscle Fiber – rectus abdominus
Location – tibialis anterior
Relative Size – Gluteus Maximus
Number of Origins – biceps brachii
Shape – Trapezius, deltoid
Origin and Insertion – sternocleidomastoid
Action – Hip Flexor
Naming of Skeletal Muscles
 Direction of muscle fibers
 Example: rectus (straight)
 Relative size of the muscle
 Example: maximus (largest)
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Naming of Skeletal Muscles
 Location of the muscle
Example: many muscles are named
for bones (e.g., temporalis)
 Number of origins
Example: triceps (three heads)
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide
Naming of Skeletal Muscles
 Location of the muscles origin and
insertion
 Example: sterno (on the sternum)
 Shape of the muscle
 Example: deltoid (triangular)
 Action of the muscle
 Example: flexor and extensor (flexes or
extends a bone)
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.37
Head and Neck Muscles
Figure 6.14
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.38
Trunk Muscles
Figure 6.15
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.39
Deep Trunk and Arm Muscles
Figure 6.16
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.40
Muscles of the Pelvis, Hip, and Thigh
Figure 6.18c
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.41
Muscles of the Lower Leg
Figure 6.19
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.42
Superficial Muscles: Anterior
Figure 6.20
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.43
Superficial Muscles: Posterior
Figure 6.21
Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings
Slide 6.44
Intramuscular Injections
(vs. subcutaneous)
• Muscle Injection Site LandmarkLandmarks
Deltoid
Acromion of Scapula
Acromion of Scapula
Vastus Lateralis ½ way betweenGreater Trochanter
of Femur and Patellahalfway of between
greater trochanter
femur and patella
Gluteus Medius
lIIiac Crest
Muscle Strain Website
• What is a Muscle Strain?
• A muscle strain is damage caused by over-stretching of muscle tissue.
The muscle tissue becomes overloaded and reaches a breaking point
where a tear or partial tear occurs.
• GRADE 1 STRAIN: There is damage to individual muscle fibers (less
than 5% of fibers). This is a mild strain which requires 2 to 3 weeks
rest.
• GRADE 2 STRAIN: There is more extensive damage, with more
muscle fibers involved, but the muscle is not completely ruptured. The
rest period required is usually between 3 and 6 weeks.
• GRADE 3 STRAIN: This is a complete rupture of a muscle. In a
sports person this will usually require surgery to repair the muscle. The
rehabilitation time is around 3 months.
Common Injuries
• Hamstring pull/strain
• tears of tendinous origins website
cause – rigorous running/quick stop-start
Groin Pull
• Strain of distal abductors of iliac crest
• website
• Shin Splints
-pain in the Distal, medial 2/3 of shin
-Tendonitis of periosteum
-running on hard surfaces/
improper running shoes
website
Patello-Femoral Syndrome
• Knee – patello-femoral syndrome a.k.a.:
runner’s knee-lateral tracking of patellaresult from over-running website
Plantar Faciitis
- chronic irritation at origin of Calcaneus-“painful-heel syndrome”
Website
Treatments
• RICE
•
•
•
•
Rest/Ice/Compression/Elevation
Anti-inflammatory—ibuprofen (NSAIDS)
-non-steroidal anti-inflammatory drugs
Steroidal drugs—cortisone/hydrocortisone
Disorders relating to the
Muscular System
• Muscular Dystrophy: inherited, muscle
enlarge due to increased fat and connective
tissue, but fibers degenerate and atrophy
• Duchenne MD: lacking a protein to
maintain the sarcolemma
• Myasthemia Gravis: progressive weakness
due to a shortage of acetylcholine receptors