* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download EE313 Lecture 2
Survey
Document related concepts
Transcript
EE313 Lecture 2 Covered Material Least Significant Bit (LSB) is the far right bit Most Significant Bit (MSB) is the far left bit MSB LSB 100010112 **Example (Binary to Decimal) 𝟏𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟐 *Starting with the LSB 𝟏𝒙𝟐𝟎 + 𝟎𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟐 + 𝟏𝒙𝟐𝟑 + 𝟎𝒙𝟐𝟒 + 𝟏𝒙𝟐𝟓 + 𝟏𝒙𝟐𝟔 + 𝟏𝒙𝟐𝟕 = 𝟏 + 𝟎 + 𝟒 + 𝟖 + 𝟎 + 𝟑𝟐 + 𝟔𝟒 + 𝟏𝟐𝟖 = 𝟐𝟑𝟕𝟏𝟎 **Example (Decimal to Binary) 𝟐𝟑𝟕𝟏𝟎 Divide by Desired Base 𝟐𝟑𝟕 ÷ 𝟐 = 𝟏𝟏𝟖 𝟏𝟏𝟖 ÷ 𝟐 = 𝟓𝟗 𝟓𝟗 ÷ 𝟐 = 𝟐𝟗 𝟐𝟗 ÷ 𝟐 = 𝟏𝟒 𝟏𝟒 ÷ 𝟐 = 𝟕 𝟕÷𝟐=𝟑 𝟑÷𝟐=𝟏 𝟏÷𝟐=𝟎 𝟐𝟑𝟕𝟏𝟎 = 𝟏𝟏𝟏𝟎𝟏𝟏𝟎𝟏𝟐 Remainder times Base Output = 1 (LSB) 𝟎. 𝟎 𝒙 𝟐 = 0 = 1 𝟎. 𝟓 𝒙 𝟐 = 1 𝟎. 𝟎 𝒙 𝟐 = 0 = 1 𝟎. 𝟓 𝒙 𝟐 = 1 = 1 (MSB) 𝟎. 𝟓 𝒙 𝟐 𝟎. 𝟓 𝒙 𝟐 𝟎. 𝟓 𝒙 𝟐 𝟎. 𝟓 𝒙 𝟐 Practice Problems 1) Convert Binary to Decimal a. 𝟏𝟏𝟎𝟏𝟏𝟎𝟐 b. 𝟎𝟎𝟎𝟏𝟏𝟏𝟎𝟏𝟐 2) Convert Decimal to Binary a. 𝟒𝟔𝟓𝟏𝟎 b. 𝟏𝟐𝟑𝟓𝟏𝟎 New Material Octal Numbering System (Base 8) is a method to group binary numbers in groups of three. Start grouping with LSB; if grouping at the MSB is less than three Bits then add zeros to complete the three Bit grouping. Allowable digits {0,1,2,3,4,5,6,7}. **Example (Binary to Octal) 𝟏𝟏𝟏𝟏𝟎𝟏𝟐 = {𝟏𝟏𝟏} {𝟏𝟎𝟏} = {𝟏𝒙𝟐𝟐 + 𝟏𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟎 } {𝟏𝒙𝟐𝟐 + 𝟎𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟎 } = {𝟕} {𝟓} = 𝟕𝟓𝟖 𝟏𝟏𝟏𝟏𝟏𝟎𝟏𝟐 = {𝟎𝟎𝟏} {𝟏𝟏𝟏} {𝟏𝟎𝟏} = {𝟎𝒙𝟐𝟐 + 𝟎𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟎 } {𝟏𝒙𝟐𝟐 + 𝟏𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟎 } {𝟏𝒙𝟐𝟐 + 𝟎𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟎 } = {𝟏} {𝟕} {𝟓} = 𝟏𝟕𝟓𝟖 **Example (Octal to Binary) 𝟓𝟏𝟐𝟖 = {𝟓} {𝟏} {𝟐} = {𝟏𝟎𝟏} {𝟎𝟎𝟏} {𝟎𝟏𝟎} = 𝟏𝟎𝟏𝟎𝟎𝟏𝟎𝟏𝟎𝟐 **Example (Decimal to Octal) 𝟐𝟗𝟒𝟏𝟎 Divide by Desired Base Remainder times Base Output 𝟐𝟗𝟒 ÷ 𝟖 = 𝟑𝟔 𝟎. 𝟕𝟓 𝒙 𝟖 = 6 (LSB) = 4 𝟒÷𝟖=𝟎 𝟎. 𝟓𝟎 𝒙 𝟖 = 4 (MSB) 𝟑𝟔 ÷ 𝟖 = 𝟒 𝟐𝟗𝟒𝟏𝟎 = 𝟒𝟒𝟔𝟖 𝟎. 𝟓𝟎 𝒙 𝟖 **Example (Octal to Decimal) 𝟕𝟒𝟓𝟖 = 𝟕𝒙𝟖𝟐 + 𝟒𝒙𝟖𝟏 + 𝟓𝒙𝟖𝟎 = 𝟒𝟒𝟖 + 𝟑𝟐 + 𝟓 = 𝟒𝟖𝟓𝟏𝟎 Practice Problems 1) True/False Question a. Is {𝟗𝟐𝟑𝟖 } a valid Number? b. Is {𝟕𝟖𝟏𝟖 } a valid Number? c. Is {𝟕𝟔𝟕𝟖 } a valid Number? 2) Convert to Decimal a. 𝟐𝟔𝟕𝟖 3) Convert to Octal a. 𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝟐 b. 𝟔𝟏𝟏𝟏𝟎 Hexadecimal Numbering System (Base 16) is a method to group binary numbers in groups of four. Start grouping with LSB; if grouping at the MSB is less than four Bits then add zeros to complete the four Bit grouping. Allowable digits {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. **Example (Binary to Hex) 𝟏𝟏𝟏𝟏𝟎𝟏𝟐 = {𝟎𝟎𝟏𝟏} {𝟏𝟏𝟎𝟏} = {𝟎𝒙𝟐𝟑 + 𝟎𝒙𝟐𝟐 + 𝟏𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟎 } {𝟏𝒙𝟐𝟑 + 𝟏𝒙𝟐𝟐 + 𝟎𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟎 } = {𝟑} {𝟏𝟑 = 𝑫} = 𝟑𝑫𝟏𝟔 **Example (Hex to Binary) 𝟓𝟏𝟐𝟏𝟔 = {𝟓} {𝟏} {𝟐} = {𝟎𝟏𝟎𝟏} {𝟎𝟎𝟎𝟏} {𝟎𝟎𝟏𝟎} = 𝟏𝟎𝟏𝟎𝟎𝟎𝟏𝟎𝟎𝟏𝟎𝟐 𝑭𝑭𝟑𝟏𝟔 = {𝑭} {𝑭} {𝟑} = {𝟏𝟏𝟏𝟏} {𝟏𝟏𝟏𝟏} {𝟎𝟎𝟏𝟏} = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟎𝟎𝟏𝟏𝟐 **Example (Decimal to Hex) 𝟐𝟗𝟔𝟖𝟏𝟎 Divide by Desired Base Remainder times Base 𝟐𝟗𝟔𝟖 ÷ 𝟏𝟔 = 𝟏𝟖𝟓 𝟎. 𝟓𝟎𝟎𝟎 𝒙 𝟏𝟔 𝟏𝟏 ÷ 𝟏𝟔 = 𝟎 𝟎. 𝟔𝟖𝟕𝟓 𝒙 𝟏𝟔 𝟏𝟖𝟓 ÷ 𝟏𝟔 = 𝟏𝟏 𝟐𝟗𝟔𝟖𝟏𝟎 = 𝑩𝟗𝟖𝟏𝟔 𝟎. 𝟓𝟔𝟐𝟓 𝒙 𝟏𝟔 Output = 8 (LSB) = 9 = B (MSB) **Example (Hex to Decimal) 𝟖𝟏𝟐𝑫𝟏𝟔 = 𝟖𝒙𝟏𝟔𝟑 + 𝟏𝒙𝟏𝟔𝟐 + 𝟐𝒙𝟏𝟔𝟏 + 𝟏𝟑𝒙𝟏𝟔𝟎 = 𝟑𝟐𝟕𝟔𝟖 + 𝟐𝟓𝟔 + 𝟑𝟐 + 𝟏𝟑 = 𝟑𝟑𝟎𝟔𝟗𝟏𝟎 **Example (Octal to Hex) --First convert to Binary and re-group then to Hexadecimal 𝟕𝟏𝟐𝟖 = {𝟕} {𝟏} {𝟐} = {𝟏𝟏𝟏} {𝟎𝟎𝟏} {𝟎𝟏𝟎} = {𝟎𝟎𝟎𝟏} {𝟏𝟏𝟎𝟎} {𝟏𝟎𝟏𝟎} = {𝟏} {𝟏𝟐} {𝟏𝟎} = {𝟏} {𝑪} {𝑨} = 𝟏𝑪𝑨𝟏𝟔 **Example (Hex to Octal) --First convert to Binary and re-group then to Octal 𝟓𝑭𝑫𝟏𝟔 = {𝟓} {𝑭} {𝑫} = {𝟓} {𝟏𝟓} {𝟏𝟑} = {𝟎𝟏𝟎𝟏} {𝟏𝟏𝟏𝟏} {𝟏𝟏𝟎𝟏} = {𝟎𝟏𝟎} {𝟏𝟏𝟏} {𝟏𝟏𝟏} {𝟏𝟎𝟏} = {𝟐} {𝟕} {𝟕} {𝟓} = 𝟐𝟕𝟕𝟓𝟖 Practice Problems 1) True/False Question a. Is {𝑭𝟑𝑭𝟏𝟔 } a valid Number? b. Is {𝑨𝟑𝟏𝟖 } a valid Number? c. Is {𝟐𝟓𝑮𝟏𝟔 } a valid Number? 2) Convert to Decimal a. 𝟐𝟔𝟕𝑩𝟏𝟔 3) Convert to Hex a. 𝟏𝟎𝟎𝟏𝟏𝟏𝟏𝟐 b. 𝟔𝟏𝟏𝟏𝟎 Binary-Coded-Decimal (BCD) System is used to represent each of the 10 decimal digits as a four Bit binary code. Allowable digits for each grouping {0,1,2,3,4,5,6,7,8,9 }. **Example (Decimal to BCD) 𝟑𝟗𝟗𝟏𝟎 = {𝟎𝟎𝟏𝟏} {𝟏𝟎𝟎𝟏} {𝟏𝟎𝟎𝟏} = 𝟎𝟎𝟏𝟏 𝟏𝟎𝟎𝟏 𝟏𝟎𝟎𝟏𝑩𝑪𝑫 **Example (BCD to Decimal) 𝟎𝟎𝟏𝟎 𝟎𝟏𝟎𝟏𝑩𝑪𝑫 = {𝟎𝒙𝟐𝟑 + 𝟎𝒙𝟐𝟐 + 𝟏𝒙𝟐𝟏 + 𝟎𝒙𝟐𝟎 } {𝟎𝒙𝟐𝟑 + 𝟏𝒙𝟐𝟐 + 𝟎𝒙𝟐𝟏 + 𝟏𝒙𝟐𝟎 } = {𝟐} {𝟓} = 𝟐𝟓𝟏𝟎 Practice Problems 1) True/False Question a. Is {𝟏𝟏𝟎𝟎 𝟎𝟏𝟎𝟏𝑩𝑪𝑫 } a valid Number? b. Is {𝟎𝟎𝟏𝟏 𝟎𝟏𝟏𝟏 𝟏𝟎𝟎𝟏𝑩𝑪𝑫 } a valid Number? c. Is {𝟎𝟏𝟎𝟏 𝟏𝟎𝟎𝟎 𝟏𝟎𝟏𝟏𝑩𝑪𝑫 } a valid Number?