* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Why Cryptography?
Survey
Document related concepts
Transcript
Number Theory and Advanced Cryptography 2. Primes and Discrete Logarithms Part I: Introduction to Number Theory Part II: Advanced Cryptography Chih-Hung Wang Feb. 2011 1 The distribution of primes The natural way of measuring the density of primes is to count the number of primes up to a bound x, where x is a real number. For a real number x ¸ 0, the function (x) is defined to be the number of primes up to x. Thus, (1) = 0, (2) = 1, (7.5) = 4, and so on. 2 Some values of (x) 3 The Sieve of Eratosthenes This is an algorithm for generating all the primes up to a given bound k. 4 The prime number theorem 5 The error term in the prime number theory (1) 6 The error term in the prime number theory (2) 7 Sophie Germain primes 8 Probabilistic primality testing Trial Division 9 Trial division 10 The Miller-Rabin test 11 Error parameter (1) 12 Error parameter (2) 13 Carmichael numbers 14 Good Primality testing (1) 15 Good Primality testing (2) 16 Error parameter 17 Generating random primes using the Miller-Rabin Test 18 Sieving up to a small bound 19 Generating a random k-bit prime 20 Perfect power testing (1) 21 Perfect power testing (2) 22 Perfect power testing (3) 23 Deterministic Primality Testing The basic idea 24 AKS algorithm 25 Running time 26 Notes 27 Primality testing in Java Public BigInteger ( int bitLength,int certainty, Random rnd ) Public boolean isProbablePrime (int certainty) 28 Cyclic groups Order of group element 29 Order of group element 30 (Example)Powers of Integers, Modulo 19 31 Cyclic group & Group generator 32 Example of Cyclic Group 33 Theorem of Cyclic Group 34 Prime Order group 35 The Multiplicative Group Zn* 36 The Multiplicative Group Zn* 37 Example of The Multiplicative Group 38 Finding Primitive Root Page 166 39 Application 1: Diffie-Hellman Key Exchange Diffie and Hellman 1976 A number of commercial products employ this key exchange technique This algorithm enables two users to exchange key securely 40 The Diffie-Hellman Key Exchange Protocol 41 Example of D-H Key Exchange (1) q=97 =5 XA = 36 XB=58 YA=536=50 mod 97 YB=558=44 mod 97 K=(YB)XA mod 97 = 4436 = 75 nod 97 K=(YA)XB mod 97 = 5058 = 75 nod 97 42 Example of D-H Key Exchange (2) 43 Hybrid Encryption Diffie-Hellman based hybrid encryption system A K=(YB)xA =(YA)xB Mod q SK=h(K) 128 – 256 bits YA B YB ESK(M) SK can be a key of the AES symmetric cryptosystem 44 The Man-in-the-Middle Attack (1) 45 The Man-in-the-Middle Attack (2) 46 The DH Problem and DL Problem (1) 47 The DH Problem and DL Problem (2) Example: a = loggh = log3 5 mod 19 = 4 48 Importance of Arbitrary Instances for Intractability Assumptions CRT riai=ria (mod qi) = h(p-1)/qi mod p a=kiqi+ai ri= g(p-1)/qi mod p 49 Chinese Remainder Theorem (1) 50 Chinese Remainder Theorem (2) 51 Chinese Remainder Theorem (3) 52 Example of CRT x 3 mod 4 x 0 mod 5 x 0 mod 7 x 8 mod 9 M / m1 1260 / 4 315 M / m2 1260 / 5 252 M / m3 1260 / 7 180 M / m4 1260 / 9 140 y1 3 y2 3 y3 3 y4 2 x y1 ( M / m1 )c1 y2 ( M / m2 )c2 y3 ( M / m3 )c3 y4 ( M / m4 )c4 3 315 3 3 252 0 3 180 0 2 140 8 5075 mod 1260 35 53 ElGamal (1) 54 ElGamal (2) 55 Meet-in-the-middle attack & Active attack of ElGamal See Page 277 Example 8.8 Malice select r U Fp* Malice sends (c1, c2’=rc2) to Alice Alice returns rm to Malice 56