Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Objective 1: To multiply monomials. Objective 2: To divide monomials and simplify expressions with negative exponents. To multiply monomials Exponent Review 5 2 Base Exponent What does it mean? 5 2 22222 It means to use 2 as a factor 5 times. What does it mean? 5 2 22222 4222 8 2 2 16 2 32 2 32 5 Exponent Review Exponent (4) Base 3 What does it mean? (4) (4)(4)(4) 3 16( 4) 64 What does it mean? (4) 64 3 Multiplying with exponents When you multiply, add the exponents. 5 x x x 8 y y y 5 3 4 1 Example 1 (4 x y )(3x y ) 5 3 1 2 What’s the exponent for this x? Example 1 (4 x y )(3x y ) 5 3 1 2 Multiply the coefficients first. Example 1 (4 x y )(3x y ) 5 3 1 12x y 6 5 2 Example 1 (4 x y )(3x y ) 5 3 1 12x y 6 5 2 Example 2 2 3 3 5 (5x y )(2 x y ) 5 10x y 8 Example 2 2 3 3 5 (5x y )(2 x y ) 5 10x y 8 Raising a power to a power When raising a power to another power, multiply the exponents. (a ) a 6 (x ) x 20 2 3 4 5 Raising a power to a power When raising a power to another power, multiply the exponents. (x y ) x y 3 4 2 6 8 Take everything in parentheses and raise it to the 2nd power. Raising a power to a power When raising a power to another power, multiply the exponents. (x n2 5 ) x 5( n 2) x Use Distributive Property. 5 n 10 Example 3 3 4 3 (2a b ) 3 9 12 2 ab Simplify the coefficient. Example 3 3 4 3 (2a b ) 2 2 2 8 3 9 12 2 ab 9 12 8a b Example 4 (2 x y )(3x y ) 1 2 1 4 3 What’s the exponent forWhat’s this x? the exponent for this x? Example 4 (2 x y )(3x y ) 1 2 1 4 3 Simplify this expression first because it has an outside exponent. Take everything in parentheses and raise it to the 3rd power. Example 4 (2 x y )(3x y ) 1 2 3 12 (2 x y )(27 x y ) 1 2 1 4 3 (3)(3)(3) 27 Now, there are no outside exponents. We can multiply the coefficients Then multiply the x’s Then multiply the y’s Example 4 (2 x y )(3x y ) 1 2 3 12 (2 x y )(27 x y ) 1 2 1 54x y 4 14 4 3 Example 4 (2 x y )(3x y ) 1 2 3 12 (2 x y )(27 x y ) 1 2 1 54x y 4 14 4 3 Example 5 (skip) 2 2 3 [(2 xy ) ] Start outside the brackets Multiply the two outside exponents. Example 5 2 2 3 [(2 xy ) ] 2 6 (2 xy ) Simplify the outside exponent. Raise everything inside the parentheses to the 6th power. Example 5 2 2 3 [(2 xy ) ] 2 6 (2 xy ) 6 6 12 2 x y 6 12 64x y To divide monomials and simplify negative exponents. Dividing with exponents When you divide, subtract the exponents. 5 2 2 2 4 3 2 10 x 2 x 8 x Example 6 5 9 ab 4 1 ab What’s the exponent for this b? Example 6 5 9 ab 4 1 ab 1 8 ab ab 8 Example 7 x 2 x 3 2 Raise everything in the parentheses to the 2nd power. Example 7 x 2 x 6 x 4 x 3 2 Subtract the exponents. Example 7 x 2 x 6 x 4 x 3 x 2 2 Example 8 y 4 2 3 Raise everything in the parentheses to the 3rd power. Example 8 y 4 6 y 3 4 2 3 Simplify the denominator. 4 4 4 64 Example 8 y 4 6 y 3 4 6 y 64 2 3 Look At This 4 x 0 x 4 x 1 1 1 1 1 1 1 1 x xxxx 1 4 x xxxx 4 Look At This 4 x 0 x 4 x x xxxx 1 4 x xxxx 4 Look At This x 1 0 This is another rule. Zero as exponent Anything raised to zero power equals 1. y 1 0 9 1 0 (7 x y ) (1) 1 4 3 0 Review: Whole Numbers Any whole number can be placed on top of 1. 4 4 1 Review: Whole Numbers Any whole number can be placed on top of 1. 7 7 1 Review: Whole Numbers Any whole number can be placed on top of 1. 15 15 1 Review: Whole Numbers Any whole number can be placed on top of 1. x x 1 Review: Whole Numbers Any whole number can be placed on top of 1. y y 1 Review: Whole Numbers Any whole number can be placed on top of 1. 5x 5x 1 Fractions There are 2 parts of a fraction. top bottom Negative Exponents When you see negative exponents, think MOVE & CHANGE Move the base from top to bottom or bottom to top. Change the exponent to a positive number. Negative Exponents 4 9 x y 9 4 y x MOVE & CHANGE Negative Exponents 4 9 x y 9 4 y x MOVE & CHANGE Negative Exponents 3 x 1 2 3 2 y x y y does not Nothing have is negative left on top. exponent. MOVE & CHANGE We knowItthere staysiswhere an invisible it is. 1 there. Negative Exponents 3 x 1 2 3 2 y x y Negative Exponents 4 2 1 1 2 4 1 2 16 4 MOVE & CHANGE Negative Exponents 4 2 1 1 2 4 1 2 16 4 MOVE & CHANGE Negative Exponents 3 x 1 x 3 1 x 3 MOVE & CHANGE Negative Exponents 3 x 1 x 3 1 x 3 MOVE & CHANGE Example 9 a 3 b 2 2 Raise everything in the parentheses to the negative 2nd power. Example 9 a 3 b 4 a 6 b 2 2 Move the negative exponents and change to positive exponents. Example 9 a 3 b 4 a 6 b 6 b 4 a 2 2 Example 10 7d 5 Example 10 7d 5 5 7d 1 7 5 1d 7 5 d Example 11 2 4 5a Move any negative exponents and change to positive. Example 11 2 4 5a 4 2a 5 Example 11 2 4 5a 4 2a 5 Example 12 (skip) 4 x 9 x Subtract the exponents. 4 9 5 Example 12 4 x 9 x x 5 Put under 1 and change exponent to positive. Example 12 4 x 9 x x 5 1 5 x The variable stays where the bigger exponent was. IMPORTANT! Your final answer can NOT have any negative exponents. Remember to move all negative exponents and change them to positives. All Rules in Symbolic Form x x x m n mn m x mn x n x 0 x 1 x n 1 n x m n (x ) x mn p mp x x n np y y m x y m n p x y mp np Example 13 4 3 7 (3ab )(2a b ) 2 3 6a b 1 (3) 2 4 7 3 Example 13 4 3 7 (3ab )(2a b ) 2 3 6a b Move negative exponents and change to positive. Example 13 4 3 7 (3ab )(2a b ) 2 3 6a b 6b 2 a 3 Example 13 4 3 7 (3ab )(2a b ) 2 3 6a b 6b 2 a 3 Example 14 2 5 4a b 5 2 6a b 7 3 2a b 3 2 5 7 52 3 Example 14 2 5 4a b 5 2 6a b 7 3 2a b 3 Move negative exponents and change to positive. Example 14 2 5 4a b 5 2 6a b 7 3 2a b 3 3 2b 7 3a Example 14 2 5 4a b 5 2 6a b 7 3 2a b 3 3 2b 7 3a