Download Chapter S28

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
The Lead Acid Electric Battery
I
Sulfuric Acid Electrolyte:
-
Terminals
+
Sulfuric
Acid
Solution
H2SO4
Spongy
Lead (Pb)
Lead Oxide
(PbO2)
Cell: 2 V
Battery: Multiple cells
H 2SO 4  2H 2O
2H 3O   SO 42
Oxidation at the Negative
Plate (Electrode:Anode):
Pb  SO42  PbSO4  2e
Reduction at the Positive
Plate (Electrode:Cathode):
PbO2  4H3O  SO42  2e  PbSO4  6H 2 O
Batteries
Vab    Ir
  Electromotive Force
r  Batterey internal resistance
Kirchoff’s Rules
• Conservation of charge
• Junction (Node) Rule: At any junction point, the
sum of all currents entering the junction must
equal the sum of the currents leaving the junction.
• Conservation of energy
• Loop Rule: The some of the changes in potential
around any closed path of a circuit must be zero.
Energy in a circuit
Series Circuit
Apply the Loop Rule
Vac  Vab  Vbc  0
+
Vac
Vac  Vab  Vbc  IR1  IR 2  I  R1  R 2   IR eq
R eq  R1  R 2  .....
Parallel Circuits
I
I1
I3
+
Apply the
Junction Rule
I2
V
 1
V V V
1
1  V
I  I1  I2  I3 


 V 


R1 R 2 R 3
 R1 R 2 R 3  R eq
1
1
1
1



 ....
R eq R1 R 2 R 3
Rule Set – Problem Solving Strategy
• A resistor transversed in the direction of assumed
current is a negative voltage (potential drop)
• A resistors transversed in the opposite direction of
assumed current is a positive voltage (potential rise)
• A battery transversed from – to + is a positive voltage.
• A battery transversed from + to - is a negative voltage.
• Ohm’s Law applies for resistors.
• Both the loop rule and junction rule are normally
required to solve problems.
More about the Loop Rule
• Traveling around the loop from a
to b
• In (a), the resistor is traversed in
the direction of the current, the
potential across the resistor is – IR
• In (b), the resistor is traversed in
the direction opposite of the
current, the potential across the
resistor is is + IR
Loop Rule, final
• In (c), the source of emf is
traversed in the direction
of the emf (from – to +),
and the change in the
electric potential is +ε
• In (d), the source of emf is
traversed in the direction
opposite of the emf (from
+ to -), and the change in
the electric potential is -ε
Example Problem 1
Given:
R1  1690
R 3  1000
R 4  3000
V = 3 Volts
Find: current in each resistor
Example Problem 2
Given:
10V
5
10
20
20V
Find: current in the 20  resistor
Alternating Current
V  t   Vo
I  t   Io
V  t   Vo sin t
V  t  Vo
I(t) 

sin t  Io sin t
R
R
AC Power
P  I2R  I2o R sin 2 t
1 2
1 Vo2
P  Io R 
2
2 R
T/2
1
1
2
sin  t dt  ?

T T / 2
2
Root Mean Square (rms)
V  t   Vo sin t
I(t)  Io sin t
2
V
V2  o
2
Vrms
2
I
I2  o
2
2
V
Vo
2
o
 V 

2
2
I rms 
1 2
2
P  Io R  I rms R
2
2
1 Vo2 Vrms
P

2 R
R
2
I
Io
2
o
I 

2
2
The Wheatstone bridge
a simple Ohmmeter
I3R 3  I1R1
I3R x  I1R 2
R2
Rx 
R3
R1
Charging a capacitor in an RC circuit
Same
Symbol

At t = 0, Qo = 0 and I o 
R
Solving the charging differential
equation
Kirchoff’s loop rule
Q
  IR   0
C
Convert to a simple equation
in Current by taking the first
derivative w.r.t. time
dI 1 dQ
R 
0
dt C dt
dI
1
R  I
dt
C
Separate variables
dI
1

dt
I
RC
Integrate the results
I t 

Io
t
dI
1
 
dt
I
RC
0
t
ln  I  t    ln  I o   
RC
It
t
ln 

RC
 Io 
t

It
 e RC
Io
I  t   Io e

t
RC
Charge buildup
dQ
It 
 Io e
dt
dQ  Io e
Q t 

0

t
RC
t
dQ  Io  e

t
RC
dt

t
RC
dt
0

Q  t   Io  RC  e

t

RC
t
t




RC

I
RC
1

e



o
0


Discharging the capacitor in an RC
circuit
At t = 0, Q = Qo
Solving the discharging differential
equation
Q
 IR  0
C
dQ 1
R
 Q
dt C
dQ
1

dt
Q
RC
Kirchoff’s loop rule
dQ
I
since charge is decreasing
dt
Separate variables
Q t 
Integrate

Qo
t
dQ
1
 
dt
Q
RC
0
Charge and current decay
t
ln Q  t    ln  Qo   
RC
Qt 
t
ln 

RC
 Qo 
t

Qt
 e RC
Qo
Q  t   Qo e

t
RC
Charge and current decay
dQ
d
I
  Qo e
dt
dt
Qo  RCt
I
e
RC
I  Io e

t
RC

t
RC
Electrical Safety
• Current kills, not voltage (70 mA)
• Normal body resistance = 105 
But could be less than 1000 
• Take advantage of insulators, remove
conductors
• Work with one hand at a time
• Shipboard is more dangerous
• Electrical safety is an officer responsibility