Download Paul Scherrer Institut

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Perceptual control theory wikipedia, lookup

Control system wikipedia, lookup

Control theory wikipedia, lookup

PID controller wikipedia, lookup

Analog-to-digital converter wikipedia, lookup

Delta-sigma modulation wikipedia, lookup

Bode plot wikipedia, lookup

Chirp spectrum wikipedia, lookup

Ringing artifacts wikipedia, lookup

Hendrik Wade Bode wikipedia, lookup

Lattice delay network wikipedia, lookup

Transcript
Wir schaffen Wissen – heute für morgen
Paul Scherrer Institut
Hans Jäckle
Basic powersupply control –
Digital implementation of analog controllers
PSI, 23. Mai 2017
Topics
Digital implementation of analog controllers
Part 1:
Basic Powersupply Controller
- Essential Tasks of a basic powersupply controller and how to achieve them
Part 2:
Discretization
- Paths to discrete controller
- Methods of discretization
- Effects of SamplingTime
Tasks of controller
• Achieve zero steady-state error
-> Integral action
PI Controller
• Ki = 1 / TMagnet
-> experimentally (step response in open loop)
-> Ki = RMagnet / LMagnet
• Kp can be found manually, starting value:
Kp_init = RMagnet / UDC_Link * ωCL / Ki
Tasks of controller
• Achieve zero steady-state error
-> Integral action
• keep operation of controller linear (avoid limitations)
-> Limit diRef / dt
-> Anti-Windup
dI/dt Limiter
• Keeps the controller in the linear regime by preventing actuator
saturation
U DC _ MIN  U CONV  I NOM * RMAGNET _ MAX
 dI 

 
LMAGNET
 dt  MAX
• Anti-Windup is a remedy in case of actuator saturation
Tasks of controller
• Achieve zero error
-> Integral action
• Stay in linear region
-> Limit diRef / dt
-> Anti-Windup
• Suppress dc-link voltage disturbances (e.g. 300Hz Ripple)
->feedforward the dc-link disturbances
DC-Link Feedforwards
DC-Link Feedforward
DC-Link Feedforward + Delay
Suppression of 300Hz ripple by a dc-link voltage feedforward
5
0
-5
gain [dB]
-10
-15
Example:
fPWM = 20kHz
-20
-30
PWM-Delay = 1/(4* fPWM)
Measurement delay
Control cycle
Total delay
-35
-> min. gain: -20dB
-25
= 12.5us
= 20us
= 10us
= 42.5us
-40
-45
0
100
200
300
Delay [us]
400
500
600
Tasks of controller
• Achieve zero error
-> Integral action
•Stay in linear region
-> Limit diRef / dt
-> Anti-Windup
• Suppress dc-link voltage disturbances
->feedforward the dc-link disturbances
Protect Output Filter Resistor
-> Output limiter
• Reduce measurement noise
-> Lowpass-filter for the measured value
• Reduce overshoot
-> Lowpass-filter for the reference value
Beyond PI
• Compensation of higher order plant dynamics e.g. the output filter
• 2-DOF structure to seperately tune reference tracking and disturbance rejection
K(s)
R(s)
G(s)
R(s)
K(s)
H(s)
K(s)
G(s)
G(s)
PI
Analog:
Paths to discrete controller
System to control
Sampled
Harmonic
response
Harmonic
response
Physical Model
Experimental
(Ziegler-Nichols,)
Analog controller
design
Sampling
Discretization
Digital controller
design
analog
digital
Source:
Commande numérique de systèmes dynamiques, R. Longchamp
Behavioural
Model
Types of discretizations
Area based approximations:
- Forward difference
- Backward difference
- Trapezoidal (Tustin, bilinear)
Response Invariant transforms:
- Step response (zero-order hold)
- Ramp response
- Impulse response
Pole-zero mapping
Area based approximations
Forward Euler:
Backward Euler:
Trapezoidal:
PI
Analog:
Discrete:
Approximations z <--> s
Source: Theorie der Regelungstechnik, Hugo Gassmann
Bode plot of integrators
Bode plot of discretized integrators
Bode plot of discretized integrators
10
10
analog
backward
forward
Magnitude (dB)
-10
-20
-10
-20
-30
-30
-40
45
-40
45
0
0
-45
-90
-135
-180
0
10
analog
tustin
0
Phase (deg)
Phase (deg)
Magnitude (dB)
0
-45
-90
-135
1
10
Frequency (rad/s)
2
10
-180 0
10
1
10
Frequency (rad/s)
2
10
How to choose sampling time
• too large
• too small
->
->
loss of information
loss of precision (numerical issues) / computational overload
• No absolute truth -> rules of thumb:
– 10x faster than Shannons sampling theorem
– Fs = 10 – 30x system bandwidth
– Loss of phase margin not more than 5°-15° compared to the continuous system
Summary
•
PI controller for magnet powersupplies is a good choice:
– can be manually tuned (only two parameters Kp & Ki)
– good static performance (zero error)
– reasonable dynamic performance
•
Fast enough sampling rate allows to regard the discrete PI controller as a (quasi-)continous controller.
•
High frequency behaviour not compensated (output filter resonance)
PSI, 23. Mai 2017
Seite 22