Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
COMP541 Memories - I Montek Singh Feb 29, 2012 1 Topics This week’s assignments Homework #1 & Lab #6 Everyone finished with them? First Test Late March will announce date after Spring Break Overview of Memory Types Read-Only Memory (ROM): PROMs, FLASH, etc. Random-Access Memory (RAM) Static today Dynamic next 2 Types of Memory Many dimensions Read Only vs. Read/Write (or write seldom) Volatile vs. Non-Volatile Requires refresh or not Look at ROM first to examine interface 3 Non-Volatile Memory Technologies Mask (old) ROM read-only memory Fuses (old) PROM programmable read-only memory Erasable EPROM erasable programmable read-only memory Electrically erasable EEPROM electrically-erasable programmable read-only memory today called FLASH! used everywhere! 4 Details of ROM Memory that is permanent k address lines 2k items n bits 5 Notional View of Internals 6 Programmed Truth Table 7 Resulting Programming In truth, they’re laid out in 2D (row, col) 8 Mask ROMs Oldest technology Originally “mask” used as last step in manufacturing Specify metal layer (connections) Used for volume applications Long turnaround Used for applications such as embedded systems and, in the old days, boot ROM but cheap to mass produce! 9 Programmable ROM (PROM) Early ones had fusible links High voltage would blow out links Fast to program Single use 10 UV EPROM Erasable PROM Common technologies used UV light to erase complete device Took about 10 minutes Holds state as charge in very well insulated areas of the chip Nonvolatile for several (10?) years 11 EEPROM Electrically Erasable PROM Similar technology to UV EPROM Erased in blocks by higher voltage Programming is slower than reading Today called “flash memory” Digital cameras, MP3 players, BIOS Limited life Some support individual word write, some block Our boards have it: A flash memory chip on our Nexys 3 boards Has a “boot block” that is carefully protected We will learn to use it in upcoming labs 1 How Flash Works Special transistor with floating gate This is part of device surrounded by insulation So charge placed there can stay for years Aside: some newer devices store multiple bits of info in a cell Interested in this? If so, we can cover in more detail w/ transistors 13 Read/Write Memories Flash is obviously writeable But not meant to be written rapidly (say at CPU rates) And often writing must be by entire blocks (disk replacement) For frequent writing, use RAM 1 Random Access Memories So called because it takes same amount of time to address any particular location Not entirely true for modern DRAMs, but somewhat true… First look at asynchronous static RAM Ones on Xilinx chip is synchronous Data available at clock edges, like registers One on board can be both Will cover details of board memory in the lab 15 Simple View of RAM Typical parameters: some word size n some capacity 2k k bits of address line Need a line to specify reading or writing typically only one wire needed sometimes two separate ones 16 Example: 1K x 16 memory RAM comes in variety of sizes from 1-bit wide main issue is no. of pins available on chip Memory size often specified in bytes This would be 2KB memory 10 address lines (=1K locations) 16 data lines (=2 bytes/location) 1 Writing Sequence of steps Setup address lines Setup data lines Activate write line (e.g., maybe a positive edge) 18 Reading Steps Setup address lines Activate read line Data available soon for asynchronous memory: after simply a specified amount of time for synchronous memory: after a clock edge 19 Chip Select Enable: Usually a line to enable the chip Why? 20 Timing: Writing 21 Timing: Reading 22 Static vs. Dynamic RAM Different internal implementations: SRAM vs. DRAM DRAM: DRAM stores charge in capacitor Disappears after short period of time Must be refreshed Small size Higher storage density larger capacities SRAM: SRAM easier to use Uses transistors (think of it as latch) Faster More expensive per bit Smaller sizes 23 Structure of SRAM Internally, each bit stored in a “latch” One memory cell per bit Cell consists of one or more transistors Not really a latch made of NANDs/NORs, but logically equivalent Behaves like an SR latch Control logic also need extra logic around the latch to make it work like a memory cell 24 Structure of SRAM Several optimized circuits often used replace a full-fledged SR latch with something simpler, smaller, faster… Not really a latch made of NANDs/NORs, but logically equivalent Behaves like an SR latch e.g., a simpler 6-transistor memory cell bitline bitline wordline 25 Example: A Simple Organization Note: In reality, more complex Only one word-line is “on” at a time 2:4 Decoder 11 Address wordline3 2 10 01 00 bitline2 wordline2 wordline1 wordline0 bitline1 stored bit = 0 stored bit = 1 stored bit = 0 stored bit = 1 stored bit = 0 stored bit = 0 stored bit = 1 stored bit = 1 stored bit = 0 stored bit = 0 stored bit = 1 stored bit = 1 Data2 Data1 bitline0 Data0 26 Zoom in: A single bit slice Operation: Cells connected to form 1 bit position (column) Word Select enables one latch from address lines only this cell is writable only this cell is read B (and B’) set by: Read/Write’ Data In Bit Select 2 Let’s look at a single bit cell bitline wordline stored bit Example: bitline = Z bitline = 0 wordline = 1 wordline = 0 stored bit = 0 stored bit = 0 bitline = Z bitline = 1 wordline = 1 wordline = 0 stored bit = 1 (a) stored bit = 1 (b) Bit Slices and Modules Entire column of cells called a bit slice basically a 1-bit wide memory! Module module refers to a single chip of memory 1-bit wide memory chips are quite common! 29 Inside an SRAM Bit Cell Actual implementation does not use a real SR latch! a tinier approximation is used logically behaves very much like an SR latch but much smaller and faster! bitline wordline stored bit bitline wordline bitline 16 X 1 RAM “Chip” Now shows address decoder selects appropriate location 31 Row/Column Layout For larger RAMs: decoder becomes pretty big also run into chip layout issues Typically: larger memories use “2D” matrix layout see next slide 32 16 X 1 RAM as 4 X 4 Array Two decoders Row Column Address just broken up Not visible from outside on SRAMs 33 Not the same as 8 X 2 RAM! Minor change in logic and pins Spot the difference! 34 Spot the difference! 35 Realistic Sizes Example: 256Kb memory organized 32K X 8 Single-column layout would need 15-bit decoder with 32K outputs! Better organization: A 2D (i.e., square) layout with: 9-bit row and 6-bit column decoders 36 SRAM Performance Latency and Throughput important Current ones have cycle times in low nanoseconds (say 2ns) Used as cache (typically on-chip or off-chip secondary cache) Sizes up to 8Mbit or so for fast chips Expensive ones can go a bit bigger Energy/power SRAMs also better for low power vs. DRAMs 37 Wider Memory What if you don’t have enough bit width? use multiple chips and side-by-side 3 Larger/Wider Memories Made up from sets of chips Consider a 64K by 8 RAM our building block 39 Larger Let’s build a larger memory 256K X 8 Decoder for high-order 2 bits Selects chip Look at selection logic Address ranges Tri-state outputs 4 Today Today we looked at: Quick look at non-volatile memory Static RAM Next class: Dynamic RAM Complex, largest, cheap Much more design effort to use Talk about memories for lab 4