Download Trai - Red Oak

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
SohCahToa
Soh
sin  opposite
hypotenuse
Cah
cos  adjacent
hypotenuse
Toa
tan  opposite
adjacent
Trigonometric Ratios III
Objectives:
1. To derive the Laws of Sines and Cosines
2. To find all the angles and sides of any
triangle using the Laws of Sines and
Cosines
Investigation: Law of Sines
Trigonometry can be applied to non-right, or
oblique, triangles. In that example, we
used it to find an unknown height. Now,
we’ll use it to find a missing side length of
a non-right triangle.
Law of Sines
If ΔABC has side lengths a, b, and c as
shown, then
Looking for an ANGLE:
sin A sin B sin C


a
b
c
Looking for a SIDE:
a
b
c


sin A sin B sin C
Example 2
Find the length of side
AC in ΔABC.
Example 3
Find the length of side
AC in ΔABC.
Acute or Obtuse?
The Law of Sines can also be used to find a
missing angle measure, but only if you
know that it is acute or obtuse. This is
simply because SSA is not a congruence
shortcut.
C
160
C
260
260
160
36
B1
36
A
B2
A
Example 4
Solve ΔABC.
Example 5
Find the indicated measure.
1. x and y
2.  and 
Example 6
Find the length of AC in acute triangle ABC.
Law of Sines
As the previous example
demonstrates, you cannot
always use the Law of
Sines for every triangle.
You need either two sides
and an angle or two
angles and a side in the
following configurations:
ASA
AAS
SSA
Law of Cosines
If ABC has sides of
length a, b, and c as
shown, then
c 2  a 2  b 2  2ab  cos C
b 2  a 2  c 2  2ac  cos B
a 2  b 2  c 2  2bc  cos A
Example 7
Simplify the equation below for C = 90°.
c 2  a 2  b 2  2ab  cos C
Example 8
Solve the equation below for C.
c 2  a 2  b 2  2ab  cos C
Example 9
Find the length of AC in acute triangle ABC.
Example 10
Solve ΔABC.
Pro Tip: SSS
When using the Law of
Cosines to find a missing
angle (SSS), it’s a good
idea to find the angle
opposite the longest side
first. This is just in case
the angle turns out to be
obtuse. Regardless of
what type of angle this
turns out to be, use the
Law of Sines and the
Triangle Sum Theorem to
find the other two angles.
1: Use the Law of Cosines
2: Use the Law of Sines
3: Use the Triangle Sum
Example 11
Find the indicated measure.
1. x and y
2.  and 
Summary
Law of
Sines
Law of
Cosines
• ASA
• AAS
• SSA
• SAS
• SSS
Given three pieces of
any triangle, you
can use the Law of
Sines or the Law of
Cosines to
completely solve
the triangle.