* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Download Chapter 25 - Fort Bend ISD
Gastroenteritis wikipedia , lookup
Horizontal gene transfer wikipedia , lookup
History of virology wikipedia , lookup
Lyme disease microbiology wikipedia , lookup
Microorganism wikipedia , lookup
Hospital-acquired infection wikipedia , lookup
Anaerobic infection wikipedia , lookup
Trimeric autotransporter adhesin wikipedia , lookup
Quorum sensing wikipedia , lookup
Phospholipid-derived fatty acids wikipedia , lookup
Human microbiota wikipedia , lookup
Triclocarban wikipedia , lookup
Disinfectant wikipedia , lookup
Marine microorganism wikipedia , lookup
Bacterial taxonomy wikipedia , lookup
Chapter 27 Prokaryotes Bacteria on the point of a pin Extreme Thermophiles The Three Domains of Life Streptococcus strepto=chain coccus=spherical Bacilli=rod-shaped Spirilla=helical includes spirochetes Largest known prokaryote Another large prokaryote paramecium Prokaryotes vary in size from 0.2µ--750µ Evolution of Prokaryotic Metabolism 1. The Origin of Glycolysis– First prokaryotes 3.5 billion years ago, probably anaerobic chemoheterotrophs. They absorbed organic compounds and used glycolysis (fermentation) to produce ATP in an atmosphere without oxygen 2. The Origin of Electron Transport Chains and Chemiosmosis– The first proton pumps were probably for pH regulation. Later some bacteria used the oxidation of organic compounds to pump H+’s to save ATP and developed the first Electron Transport Chains. Some got so good at transporting H+’s that they could actually develop a gradient and use the influx to drive the production of ATP. 3. The Origin of Photosynthesis– The first light absorbing pigments probably provided protection by absorbing UV light. Bacteriorhodopsin in extreme halophiles uses light energy to pump H+’s out of the cell and produce a gradient which is then used to produce ATP (Photosystem I) . Photoheterotrophs 4. Cyanobacteria, Photoautotrophs, Splitting H2O and Producing O2– Photosystem II evolved in cyanobacteria and they split water and released free oxygen. The oxygen was toxic to many organisms which became extinct. (First Great Extinction) 5. Origin of Cellular Respiration– Some prokaryotes modified their photosynthetic ETC’s to reduce the level of toxic O2. The purple non-sulfur bacteria still use their ETC’s for both photosynthesis and respiration. Eventually some bacteria used O2 to pull electrons through proton pumps and aerobic respiration began. aerobic chemoheterotrophs Cell Walls All the proteobacteria and the eubacteria have peptidoglycan cell walls. Archaebacteria have a different type of cell wall. Cell walls protect bacteria from cytolysis in hypotonic solutions but can not protect them from plasmolysis in hypertonic solutions. Mycoplasmas without cell walls are susceptible to both. Penicillin denatures (noncompetitive inhibitor) the enzyme that bacteria use to form their cell walls and leaves them susceptible to cytolysis. Gram-positive diplococcus Gram-positive staphlococcus and Gram-negative diplobacillus Bacillus with Pilli-used for conjugation, attachment to surfaces and snorkels for getting oxygen Bacterial flagella rotate rather than bend Bacteria with flagella Bacteria with flagella Bacteria with flagella Infolding of the plasma membrane give these bacteria respiratory membranes and thylakoid-like membranes Bacteria growing on agar in a petri dish Mold cultures An anthrax endospore Endospores ARCHAEA BACTERIA Extreme halophiles in seawater evaporation ponds that are up to 20% salt; colors are from bacteriorhodopsin a photosynthetic pigment very similar to the pigment in our retinas Hot springs with extreme thermophiles Hydrogen Sulfide Metabolizing Chemoautotrophic Archaea found in sulfur springs Eubacteria The Proteobacteria are a major group (phylum) of bacteria. They include a wide variety of pathogens, such as Escherichia, Salmonella(rod-shaped Gram-negative enterobacteria that causes typhoid fever and the foodborne illness salmonellosis , Vibrio(motile gram negative curvedrod shaped bacterium with a polar flagellum that causes cholera in humans.) , Helicobacter(stomach ulcers), and many other notable genera.[1] Others are free-living, and include many of the bacteria responsible for nitrogen fixation. The group is defined primarily in terms of ribosomal RNA (rRNA) sequences, and is named for the Greek god Proteus (also the name of a bacterial genus within the Proteobacteria), who could change his shape, because of the great diversity of forms found in this group. All Proteobacteria are Gram-negative, with an outer membrane mainly composed of lipopolysaccharides. Many move about using flagella, but some are non-motile or rely on bacterial gliding. The last include the myxobacteria, a unique group of bacteria that can aggregate to form multicellular fruiting bodies. There is also a wide variety in the types of metabolism. Most members are facultatively or obligately anaerobic and heterotrophic, but there are numerous exceptions. A variety of genera, which are not closely related to each other, convert energy from light through photosynthesis. These are called purple bacteria, referring to their mostly reddish pigmentation. Alpha Proteobacteria Alpha Proteobacteria Rocky Mountain Spotted Fever Ti plasmid Symbiosis with Legumes Alpha Proteobacteria Fruiting bodies of myxobacteria Helicobacter pylori causes stomach ulcers The Rickettsia are Gram-negative, obligate intracellular bacteria that infect mammals and arthropods. R. prowazekii is the agent of epidemic typhus. During World War I, approximately 3 million deaths resulted from infection by this bacterium. In World War II, the numbers were similar. This agent is carried by the human louse; therefore, disease is a consequence of overcrowding and poor hygiene. Rocky Mountain spotted fever and Q fever remain relatively common. Rhizobium Streptomycetes-soil bacteria that produces an antibiotic Sulfur bacteria that split H2S in photosynthesis Cyanobacteria with heterocysts-specialized cells with the enzymes for nitrogen fixation Another Cyanobacteria Another Cyanobacteria Another Cyanobacteria Cyanobacteria Algae Blooms Spirochete that causes Lyme disease Bull's-eye rash of a person with Lyme disease Bull's-eye rash of a person with Lyme disease Deer tick that carries the spirochetes that cause Lyme disease Spirochete that causes Syphilis Spirochete Mycoplasms that cause Chlamydiae No cell wall and smallest of eubacteria Mycoplasmas-covering a human fibroblast cell Chlamydias living inside an animal cell Mycoplasms that cause Chlamydiae Mutualism of a bioluminescent bacteria in a “headlight fish” The yellow bacillus is a pathogenic bacteria that causes respiratory infections on the membranes inside the nose. The blue bacteria on this slide are commensal living on the membranes inside the nose but causing no harm. Opportunistic infection Koch’s postulates Gram-positive actinomycetes causes tuberculosis destroys tissues Clostridium botulinum releases exotoxins in food it is an obligate anaerobe Vibrio cholerae releases an exotoxin that causes severe diarrhea Salmonella typhi endotoxins that cause typhoid fever, another species of Salmonella causes common food poisoning due to endotoxins explains why it takes 12 -48 hours for symptoms to show up Bioremediation bacteria breakdown sewage Spraying fertilizer on oil spills for Bioremediation Smaller bacteria attacking a larger one Cyanobacteria Conjugation “caught in the act”