Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Excitation of Chlorophyll by Light • When a pigment absorbs light, it goes from a ground state to an excited state, which is unstable • When excited electrons fall back to the ground state, photons are given off, an afterglow called fluorescence • If illuminated, an isolated solution of chlorophyll will fluoresce, giving off light and heat Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings e– Excited state Heat Photon Chlorophyll molecule Photon (fluorescence) Ground state Excitation of isolated chlorophyll molecule Fluorescence A Photosystem: A Reaction Center Associated with Light-Harvesting Complexes • A photosystem consists of a reaction center surrounded by light-harvesting complexes • The light-harvesting complexes (pigment molecules bound to proteins) funnel the energy of photons to the reaction center Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • A primary electron acceptor in the reaction center accepts an excited electron from chlorophyll a • Solar-powered transfer of an electron from a chlorophyll a molecule to the primary electron acceptor is the first step of the light reactions Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Thylakoid Photosystem Photon Thylakoid membrane Light-harvesting complexes Reaction center STROMA Primary electron acceptor e– Transfer of energy Special chlorophyll a molecules Pigment molecules THYLAKOID SPACE (INTERIOR OF THYLAKOID) • There are two types of photosystems in the thylakoid membrane • Photosystem II functions first (the numbers reflect order of discovery) and is best at absorbing a wavelength of 680 nm • Photosystem I is best at absorbing a wavelength of 700 nm • The two photosystems work together to use light energy to generate ATP and NADPH Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Noncyclic Electron Flow • During the light reactions, there are two possible routes for electron flow: cyclic and noncyclic • Noncyclic electron flow, the primary pathway, involves both photosystems and produces ATP and NADPH Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings H2O CO2 Light NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP NADPH O2 [CH2O] (sugar) Primary acceptor Energy of electrons e– Light P680 Photosystem II (PS II) H2O CO2 Light NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP NADPH O2 [CH2O] (sugar) Energy of electrons Primary acceptor 2 H+ 1/ 2 + O2 Light H2O e– e– e– P680 Photosystem II (PS II) H2O CO2 Light NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP NADPH O2 [CH2O] (sugar) Primary acceptor Energy of electrons Pq 2 H+ + 1/ 2 O 2 Light H2O e– Cytochrome complex Pc e– e– P680 ATP Photosystem II (PS II) H2O CO2 Light NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP NADPH O2 [CH2O] (sugar) Primary acceptor Primary acceptor e– Energy of electrons Pq 2 H+ 1/ 2 + O2 Light H2O e– Cytochrome complex Pc e– e– P700 P680 Light ATP Photosystem II (PS II) Photosystem I (PS I) H2 O CO2 Light NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP NADPH O2 [CH2O] (sugar) Primary acceptor Primary acceptor e– Pq Energy of electrons 2 H+ e– H2O Cytochrome complex + 1/2 O2 Light Fd e– e– NADP+ reductase Pc e– e– NADPH + H+ P700 P680 Light ATP Photosystem II (PS II) NADP+ + 2 H+ Photosystem I (PS I) e– ATP e– e– NADPH e– e– e– Mill makes ATP e– Photosystem II Photosystem I Cyclic Electron Flow • Cyclic electron flow uses only photosystem I and produces only ATP • Cyclic electron flow generates surplus ATP, satisfying the higher demand in the Calvin cycle Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Primary acceptor Primary acceptor Fd Fd NADP+ Pq NADP+ reductase Cytochrome complex NADPH Pc Photosystem I Photosystem II ATP A Comparison of Chemiosmosis in Chloroplasts and Mitochondria • Chloroplasts and mitochondria generate ATP by chemiosmosis (generation of ATP by the movement of hydrogen ions across a membrane), but use different sources of energy • Mitochondria transfer chemical energy from food to ATP; chloroplasts transform light energy into the chemical energy of ATP • The spatial organization of chemiosmosis differs in chloroplasts and mitochondria Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Mitochondrion Chloroplast CHLOROPLAST STRUCTURE MITOCHONDRION STRUCTURE H+ Intermembrane space Membrane Lower [H+] Thylakoid space Electron transport chain ATP synthase Key Higher [H+] Diffusion Stroma Matrix ADP + P i ATP H+ • The current model for the thylakoid membrane is based on studies in several laboratories • Water is split by photosystem II on the side of the membrane facing the thylakoid space • The diffusion of H+ from the thylakoid space back to the stroma powers ATP synthase • ATP and NADPH are produced on the side facing the stroma, where the Calvin cycle takes place Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings H2 O CO2 Light NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP NADPH STROMA (Low H+ concentration) O2 [CH2O] (sugar) Cytochrome complex Photosystem II Light 2 Photosystem I Light NADP+ reductase H+ NADP+ + 2H+ Fd NADPH + H+ Pq H2O THYLAKOID SPACE (High H+ concentration) 1/2 Pc O2 +2 H+ 2 H+ To Calvin cycle Thylakoid membrane STROMA (Low H+ concentration) ATP synthase ADP + Pi ATP H+ The Calvin cycle uses ATP and NADPH to convert CO2 to sugar • The Calvin cycle, like the citric acid cycle, regenerates its starting material after molecules enter and leave the cycle • The cycle builds sugar from smaller molecules by using ATP and the reducing power of electrons carried by NADPH • Carbon enters the cycle as CO2 and leaves as a sugar named glyceraldehyde-3-phospate (G3P) • For net synthesis of one G3P, the cycle must take place three times, fixing three molecules of CO2 Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • The Calvin cycle has three phases: – Carbon fixation (catalyzed by rubisco) – Reduction – Regeneration of the CO2 acceptor (RuBP) Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings H2 O CO2 Input Light (Entering one CO2 at a time) 3 NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP Phase 1: Carbon fixation NADPH Rubisco O2 [CH2O] (sugar) 3 P Short-lived intermediate P P 6 3-Phosphoglycerate 3 P P Ribulose bisphosphate (RuBP) 6 6 ADP CALVIN CYCLE ATP H2O CO2 Input Light (Entering one CO2 at a time) 3 NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP Phase 1: Carbon fixation NADPH Rubisco O2 [CH2O] (sugar) 3 P P Short-lived intermediate 3 P P 6 P 3-Phosphoglycerate Ribulose bisphosphate (RuBP) 6 ATP 6 ADP CALVIN CYCLE 6 P P 1,3-Bisphosphoglycerate 6 NADPH 6 NADP+ 6 Pi 6 P Glyceraldehyde-3-phosphate (G3P) 1 P G3P (a sugar) Output Glucose and other organic compounds Phase 2: Reduction H2O CO2 Input Light (Entering one CO2 at a time) 3 NADP+ ADP CALVIN CYCLE LIGHT REACTIONS ATP Phase 1: Carbon fixation NADPH Rubisco O2 [CH2O] (sugar) 3 P P Short-lived intermediate 3 P P 6 P 3-Phosphoglycerate Ribulose bisphosphate (RuBP) 6 ATP 6 ADP 3 ADP 3 CALVIN CYCLE 6 P ATP P 1,3-Bisphosphoglycerate 6 NADPH Phase 3: Regeneration of the CO2 acceptor (RuBP) 6 NADP+ 6 Pi P 5 G3P 6 P Glyceraldehyde-3-phosphate (G3P) 1 P G3P (a sugar) Output Glucose and other organic compounds Phase 2: Reduction Alternative mechanisms of carbon fixation have evolved in hot, arid climates • Dehydration is a problem for plants, sometimes requiring tradeoffs with other metabolic processes, especially photosynthesis • On hot, dry days, plants close stomata, which conserves water but also limits photosynthesis • The closing of stomata reduces access to CO2 and causes O2 to build up • These conditions favor a seemingly wasteful process called photorespiration Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Photorespiration: An Evolutionary Relic? • In most plants (C3 plants), initial fixation of CO2, via rubisco, forms a three-carbon compound • In photorespiration, rubisco adds O2 to the Calvin cycle instead of CO2 • Photorespiration consumes O2 and organic fuel and releases CO2 without producing ATP or sugar Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings • Photorespiration may be an evolutionary relic because rubisco first evolved at a time when the atmosphere had far less O2 and more CO2 • In many plants, photorespiration is a problem because on a hot, dry day it can drain as much as 50% of the carbon fixed by the Calvin cycle Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings C4 Plants • C4 plants minimize the cost of photorespiration by incorporating CO2 into four-carbon compounds in mesophyll cells • These four-carbon compounds are exported to bundle-sheath cells, where they release CO2 that is then used in the Calvin cycle Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Photosynthetic cells of C4 plant leaf Mesophyll cell PEP carboxylase Mesophyll cell CO2 Bundlesheath cell The C4 pathway Oxaloacetate (4 C) PEP (3 C) Vein (vascular tissue) ADP Malate (4 C) ATP C4 leaf anatomy Stoma Bundlesheath cell Pyruvate (3 C) CO2 CALVIN CYCLE Sugar Vascular tissue CAM Plants • CAM plants open their stomata at night, incorporating CO2 into organic acids • Stomata close during the day, and CO2 is released from organic acids and used in the Calvin cycle Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Sugarcane Pineapple CAM C4 CO2 Mesophyll cell Organic acid Bundlesheath cell CO2 CO2 incorporated into four-carbon Organic acid organic acids (carbon fixation) CO2 CALVIN CYCLE Sugar Spatial separation of steps CO2 Organic acids release CO2 to Calvin cycle Night Day CALVIN CYCLE Sugar Temporal separation of steps The Importance of Photosynthesis: A Review • The energy entering chloroplasts as sunlight gets stored as chemical energy in organic compounds • Sugar made in the chloroplasts supplies chemical energy and carbon skeletons to synthesize the organic molecules of cells • In addition to food production, photosynthesis produces the oxygen in our atmosphere Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Light reactions Calvin cycle H2O CO2 Light NADP+ ADP + Pi RuBP Photosystem II Electron transport chain Photosystem I ATP NADPH 3-Phosphoglycerate G3P Starch (storage) Amino acids Fatty acids Chloroplast O2 Sucrose (export)