* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Elicited Behavior and Classical Conditioning
Compounding wikipedia , lookup
Neuropsychopharmacology wikipedia , lookup
Pharmacogenomics wikipedia , lookup
Psychopharmacology wikipedia , lookup
Plateau principle wikipedia , lookup
Pharmaceutical industry wikipedia , lookup
Pharmacognosy wikipedia , lookup
Prescription drug prices in the United States wikipedia , lookup
Drug discovery wikipedia , lookup
Prescription costs wikipedia , lookup
Drug design wikipedia , lookup
Neuropharmacology wikipedia , lookup
Theralizumab wikipedia , lookup
Principals of Pharmacology for the Health Sciences Lecture 1 Dr. Steven I. Dworkin What is a Drug? • • A substance used in the treatment of disease: medicament, medication, medicine, pharmaceutical. A substance that affects the central nervous system and is often addictive: hallucinogen, narcotic, opiate. Dr. Steven I. Dworkin What is a Drug? • Definition can depend on culture and can change within a culture • Examples – Herbal antidotes – Vitamines – Food additives – Prescription Medications – Illicit Substances • Recreation • Augment natural abilities Dr. Steven I. Dworkin Pharmacology – Scientific study of the actions of drugs and their effects on a living organism. • Neuropharmacology – How drugs effect the central nervous system. • Psychopharmacology – Drug-induced changes in mood, thinking, and behaviors. • Behavioral Pharmacology – Evaluate specific behavioral effects of drugs • Change on-going patterns of behavior • Produce reinforcement • Produce specific internal states. Dr. Steven I. Dworkin Human Nervous System The nervous system has two major divisions: the central nervous system and the peripheral nervous system. Each of these has major subdivisions, as shown. Dr. Steven I. Dworkin Drug Action • Specific molecular changes produced by a drug when it binds to a particular target site or receptor. • Drug effects – alterations in physiologic or psychological functions. – Specific Effects • Therapeutic effect • Side effect – Nonspecific Effects • Unique characteristics of the individual – Context dependent tolerance – Placebo effects Dr. Steven I. Dworkin Herbal Medicine • Opium poppy – morphine • Madagascar rosy periwinkle – chemotherapy • Foxglove plant – digitalis • Coca Plant • Ephedra plant Concerns variations in potency contain toxons augment or attenuate effects of therapeutics adverse side effects Dr. Steven I. Dworkin Pharmacokinetic Factors Determine Drug Action • Bioavailability • amount of drug in the blood free to bind at specific target site to elicit a drug effect – 1) Route of Administration – 2) Absorption and distribution – 3) Binding – 4) Inactivation or biotransformation – 5) Excretion Dr. Steven I. Dworkin Methods of Drug Administration – Determines amount of drug reaching site of action and how quickly drug effect occurs. • Oral administration (PO) – Safe and economical – Drug must dissolve in stomach fluids and pass through stomach wall. – Absorption by small intestine – Influenced by stomach load – First pass effect • Metabolism by liver Dr. Steven I. Dworkin Methods of Drug Administration • Intravenous (IV) – Rapid and accurate method of drug administration – Large potential for adverse effects • Overdose • Allergic reaction • Hepatitis, HIV…… • Intramuscular (IM) – Slower more even distribution • 10- 30 minutes – longer with a drug constricts blood vessels – Muscle irritation Dr. Steven I. Dworkin Methods of Drug Administration • Intraperitoneal (IP) – Injection through abdominal wall into the peritoneal cavity • Rapid • Somewhat variable effects • Subcutaneous (SC) – Injection just below skin – Absorption dependent on blood flow to site • Fairly slow and steady • Slow release metods Dr. Steven I. Dworkin Methods of Drug Administration • Inhalation – Rapid delivery – Absence of first-pass effects – Irritation of nasal mucosa and lungs • Topical • Transdermal • Epidural • Intracranial • Intracerebralventricle Dr. Steven I. Dworkin Pharmacokinetic factors that determine bioavailability or drugs From the site of administration (1),the dose moves through cell membranes to be absorbed into the blood (2), where it circulates to all cells in the body. Some of the dose molecules may bind to inactive sites such as plasma proteins or storage depots (3) and some to receptors in target tissue. Blood-borne dose molecules also enter the liver (4), where they may be transformed into metabolites and travel to the kidneys and other discharge sites for ultimate excretion (5) from the body. Dr. Steven I. Dworkin Dr. Steven I. Dworkin The time course of drug blood level depends on route of administration The blood level of the same amount of dose administered by different procedures to the same individual varies significantly. Intravenous (IV) produces an instantaneous peak when the dose is placed into the blood and rapid decline. Intramuscular (IM) administration produces rapid absorption and rapid decline, although IM administration in oil (IM-oil) shows slower absorption and gradual decline. Slow absorption following subcutaneous (SC) administration means some of the dose is metabolized before absorption is complete. For that reason, no sharp peak occurs and overall blood levels are Iower. Oral (PO) administration produces the lowest blood levels and a relatively short time over threshold for effectiveness in this instance. (After Levine,1973.) Dr. Steven I. Dworkin TABLE 1.1 Advantages and Disadvantages of Selected Routes of Drug Administration Route of administration Advantages Disadvantages Oral (PO) Safe; self-administered; economical; Slow and highly variable absorption; Intravenous (IV) no needle-related complications Most rapid; most accurate blood concentration subject to first-pass metabolism; less predictable blood levels Overdose danger; cannot be readily reversed; Intramuscular (IM) Slow and even absorption requires sterile needles and medical technique Localized irritation at site of injection; Subcutaneous (SC) Slow and prolonged absorption needs sterile equipment Variable absorption depending on blood flow Inhalation Large absorption surface; very rapid onset; Irritation of nasal passages; small particles inhaled Topical no injection equipment needed Localized action and effects; easy to selfadminister may damage lungs May be absorbed into general circulation Transdermal Controlled and prolonged absorption Local irritation; useful only for lipid soluble drugs Epidural Bypasses blood—brain barrier; Not reversible; needs trained anesthesiologist; very rapid effect on CNS possible nerve damage Dr. Steven I. Dworkin Transport Across Membranes • Phospholipid – Complex lipid molecules form cell membranes – Negative charge at one end two uncharged lipid tails Dr. Steven I. Dworkin Transport Across Membranes • Lipid-soluble drugs – Enter cells by passive diffusion across concentration gradient. • Ionized drugs – PH of the solution – pKa (PH at which drug is 50% ionized TABLE pH of Body Fluids Fluid pH Stomach fluid 1.0—3.0 Small intestine 5.0–6.6 Blood 7.35–7.45 Kidney urine 4.5–7.5 Saliva 6.2–7.2 CSF 7.3–7.4 Dr. Steven I. Dworkin Transport Across Membranes Effect of ionization on drug Fabsorption On the right side of the cell i barrier in stomach acid (pH 2.0),the molecules tend to remain in the gaspirin non-ionized form (1), which promotes the upassage of the dose through the cell r walls (2) to the blood. Once the intact easpirin molecules reach the blood (pH 7.4), they ionize (3) and are"trapped"in 1the blood to be circulated throughout the . body. In the lower portion of the figure, 5when the aspirin has reached the intesit tends to dissociate to a greater Etine, extent (4) in the more basic pH. Its more f ionized form reduces passage (5) f through the cells to the blood, so eabsorption from intestine is slower than from the stomach. c t o f i o Dr. Steven I. Dworkin Drug Distribution • Once in blood carried throughout body in 1-2 min • Areas with most blood flow highest concentration of drug • Greatest concentration in heart, brain, kidneys and liver Dr. Steven I. Dworkin Blood-Brain Barrier Distribution of cerebrospinal fluid (A) The CSF (blue) is manufactured by the choroid plexus within the cerebral ventricles. In addition to filling the ventricles and their connecting aqueducts, CSF fills the space between the arachnoid membrane and the pia mater (subarachnoid space) to cushion the brain against trauma. (B) Enlarged diagram to show detail of CSF-filled subarachnoid space and the relationship to cerebral blood vessels. Notice how blood vessels penetrate the brain tissue. Dr. Steven I. Dworkin Blood-Brain Barrier Cross section of typical capillaries and brain capillaries (A) I he capillaries found throughout the body have characteristics that encourage the movement of materials between the blood and surrounding cells. (B) Brain capillaries minimize movement of water-soluble molecules through the blood vessel wall because there are essentially no large or small clefts or pinocytotic sites. (After Oldendorf, 1975.) Dr. Steven I. Dworkin Biotransformation and Elimination • Drug Clearance – First-order kinetics • Constant fraction (50%) free drug in blood removed in each time interval. – Half-life or T1/2 – Zero-order kinetics • Drug cleared at constant rate regardless of concentration – Ethanol » 10-15 ml/hour or 1.0 ounce of 50% alcohol/hour Dr. Steven I. Dworkin Drug Elimination First-order kinetics of drug clearance Exponential elimination of dose from the blood occurs when clearance during a fixed time interval is always 50% of the dose remaining in blood. For example,the half-life of orally administered dextroamphetamine (Dexedrine) is approximately 10 hours.Therefore,10 hours (1 half-life) after the peak plasma concentration has been reached, the dose concentration is reduced to about 50% of its initial value. After 20 and 30 hours (i.e.,2 and 3 half-lives) have elapsed, the concentration is reduced to 25% and 12.5%, respectively. After 6 half-lives,the dose is essentially eliminated, with 1.6% remaining.The curve representing the rate of clearance is steeper early on when the rate is more rapid and becomes more shallow as the rate of clearance decreases. Dr. Steven I. Dworkin Half-Life of Some Common Drugs Drug Trade/Street Name Half-life Cocaine Coke, snow 0.5-1.5 hours Nicotine Tobacco 2 hours THC Marijuana 20-30 hours Acetylsalicylic Acid Asprin 3-4 hours Ibuprofen Advil 3-4 hours Naproxen Aleve 12 hours Ultram Tramidol 6-7 hours ketoprofen Orudis 5 hours Morphine Morphine 1.5-2 hours Dr. Steven I. Dworkin Biotransformation • Liver microsomal enzymes – Phase 1 nonsynthetic modification • Oxidation, reduction, hydrolysis • Active metabolites – Phase II synthetic • Conjugation of drug with small molecule • Inactive • Cytochrome P450 enzyme family – Enzyme induction Dr. Steven I. Dworkin Factors Influencing Drug Metabolism • Enzyme induction – drug produced increase in liver enzymes – Carbamazepine and oral contraceptives – Cigarette smoke and antidepressants and caffeine • Enzyme inhibition – MAOIs and tyramine • Drug competition – Ethanol, barbiturates, benzodiazepines • Age, sex, genetics – Genetic polymorphisms Dr. Steven I. Dworkin 1. 2. What do all drugs share in common? Name one route of drug administration and list advantages and disadvantages of its use. 3. What are the two major divisions of the central nervous system? 4. What are the two major divisions of the peripheral nervous system? 5. Name two potential problems associated with herbal compounds. 6. List two of the major differences between lipid soluble and ionized drugs. 7. Describe the blood-brain barrier. What purpose does it serve? 8. I have just taken 2 Aleve tablets (50 mg/each), how long will the drug remain in my body. 9. During the past 3 hours I have consumed 3 glasses of wine (12% ethanol) and one large cigar. How long should I wait before trying to drive home safely? 10. What factors are important in estimating the latency from drug administration to drug effect (latency of drug action)? Dr. Steven I. Dworkin